Fungrim home page

1.00000000000000000000000000000

From Ordner, a catalog of real numbers in Fungrim.

DecimalExpression [entries]Frequency
1.000000000000000000000000000001     [23256b 848d97 f0d72c a891da 1eeccf bcdfc6 4b040d 42d727 c19cd6 a0ba58 166a87 9c1e9a d5917b dabb47 dab889 6b8963 826257 5d16e5 abbe42 d81f05 55bf43 9973ef 3fb309 af7d3d eda0f3 a997f2 7137a2 f617c0 3478af 483e7e b4ed44 69fe63 34136c 644d75 23077c 420007 bb2d01 0d9352 498036 54f420 9f19c1 0650f8 37fb5f 6520e7 0d8639 7c014b 0e5d90 937fa9 0ce854 af31ae a807a7 4c166d 62b0c4 74274a dc558b 978576 e00d9e 9758ac b1d132 050c46 288207 3cac28 271314 9be916 ed4f6f 9b3fde 9d0839 ea56d1 f78fa0 cc6d21 3c87b9 5b87f3 8d90e9 22dc6e 70878b 1c90fb 10165f d6703a 2a8ec9 a62320 b506ad d496b8 1ba9a5 151e42 4a30f1 ee56b9 4228cd caf10a cb5071 dfea7d 4d2e45 da1873 f946a5 9bf21b e3896e 2b2066 92cc17 f0639c 82b410 42a909 632063 1448e3 0cbe75 fd82ab 8027e8 45267a e7224b 024a84 b786ad 00e608 41f950 e9f966 7ae3ed 12ce84 d1ef91 07a654 0feb19 3f1547 8c52de 1fc63b 700d94 233814 963387 40baa9 271b73 03aca0 0ed5e2 7b5755 d6d836 fb7a63 7d559c ed4cca dfb55b a498dd d16cb4 4d26ec 5ff181 91f156 7a7d1d 2e576e 53fcdd 830dd4 c70178 73427b 20e530 61480c 54daa9 ce39ac 931201 984d9c 1dc520 fdf80d 4d65e5 cbbf16 192a3e c53d94 e85723 c6c108 c03f78 57d31a 11687b 4d1f6b 68b73d 155343 925fdf f46e0e 4cb707 0cf60d 18ec99 d43f30 3e84e3 fda595 89c9e4 713966 bf747b 338b5c 685892 8b5ddb fda084 eba27c 8332d8 ae791d 5f0adb 59184e 7dab87 99ff4c b9c650 38b4f3 9923b7 30b67b b4165c 807c7d d280c5 e2a734 f88596 599417 541e2e 781eae 127f05 b891d1 a68214 22b67a b6017f d2f183 8671a4 09e2ed 4099d2 51fd98 bc755b f7a866 55d23d 99dc4a 077394 2b021c 51206a 6cbce8 d1ec2d 03fbe8 2fec14 b7174d fc3c44 945fa5 9e30e7 d9a187 ff190c 8c21f5 5eb446 9f3474 0abbe1 5bdba2 441301 b78a50 5ce30b 48a1c6 b18020 0ad263 b81ca0 01bbb6 93a877 c54c85 1a907e 4bf3da 64081c 630eca 2ada0f 791c44 bc2f88 14af98 9448f2 a3ab2a f5c3c5 8ae153 a07d28 c5d388 47acde ad1eaf 390158 a8ea67 62f7d5 d8cac6 7f5468 5404ce cf5355 250a45 62f23c d0a331 9357b9 4246ae 8d0629 ddc7e1 f07e9d 62f12c 8f0a91 59e5df 72db94 b049dc 22a9cd 44d300 34d1c6 16a1f4 831ea4 73f5e7 98f642 591d64 66efb8 9b7d8c 8fbf69 b01280 abc1e7 3bf702 463077 5cb675 3142ec 9ccaef 75e141 1e6344 c60679 7466a2 be9a45 b0f500 02a8d7 692e42 500c0a ca9123 cc234c 8f71cb fdfdcc fa6ff7 a222ed 166402 0477b3 69be32 f171a6 a17386 22ee07 1eaaed 82c978 7c4457 20bf69 6b2078 9b7f05 a14cfc 005478 8c2862 dad27b a91f8d 74be8f 0895b1 98688d 9d26d2 2dcf0c 3fe553 33aa62 0b643d acdce8 50adea d83109 b7a578 f42042 4e3853 6fce07 1c770c 33ee4a ce327b 7cb17f cf6e35 5c054e febdd2 903962 b65d19 a9a405 fad16f 1c25d3 6161c7 afabeb ed210c 4a4739 1d730a 4b65d0 e30d7e f1dd8a b978f0 8c9ba1 2f3ed3 93e149 190843 575b8f 722241 177de7 5df909 f35a37 be9790 e60205 f80439 38c2d5 8a316c a1ca3e 3d6d7e d25d10 ae76a3 5a11eb 0a7f30 2a4b9d 5261e3 e0b322 d39c46 769f6e 5c9675 fe1b96 3e05c6 69348a a2675b dc6806 3f5711 2a11ab 7ce79e f1bd89 1403b5 7cc3d3 741859 209fc8 c76e72 46f244 8547ab d35c54 e6d333 ef4b53 8f43ab 00c331 52302f 645c98 3009a7 f8dfaf fae9d3 de9800 b5bd5d e1797b 649dc0 fc3ef5 b07750 75cb8c a91200 e63fe8 512beb 7a168a 687b4d 931d89 21e21a acf63c 458198 a34260 90a1e1 e677fb 2ae142 54951a 04217b b66d1e 0e649f 77d2f8 ab1c77 98703d ce2272 a4e947 46c021 417619 471485 80f7dc e2bc80 d8c6d1 3e1435 75eacb 1e00d2 6ade92 081abd da7fb1 1d4638 08ad28 367ac2 a1f7ea 3d5327 69a1a9 12a9e8 c6be24 fddfe6 2573ba da16db 11dfd2 fb6ce2 66fefb ad8db2 699c83 c24323 41cf8e 6c2b31 235d0d cb493d 5e1d3b 1792a9 a68e0e f55f0a bf533f d7a4e5 9a944c bdea17 a4cc3b 8519dd 71a264 84f403 d41a95 f50c74 47331d b760d1 1d46d4 7f8a58 775637 af23f7 a9f190 3a1316 b3fc6d 33690e cfefa9 2245df bbfb6c 26fd1b 25435b 5d41b1 e03b7c 4f20ff e08bb4 8a9884 dc507f 771801 b7cfb3 8d304b 532f31 288da1 ada157 81ffcd 68cc2f cb93ea d38c27 04d3a6 c2dcfa 58d91f 0bd6aa e87c43 1c3957 3ac8a5 a4f9c9 00cdb7 634687 5b85bf 3b43b0 23961e e13fe9 921ef0 75231e aadf90 412334 8b825c 1d731f 7efe21 c5bdcc 844561 c92a6f e50532 4f5575 dd9d26 3c1021 d38a03 8d7b3d 34fafa c89abc 96af56 397051 b62aae 752619 0e2425 3bffa9 c8d10e 5cb57e 53d869 d4e418 1026e3 fbe121 1fa8e7 1e142c 0fda1b ed302a 01422b 47e587 e50a56 8a34d1 a08583 5ada5f 82926c 774d37 1c0fee 7b2c26 b788a1 1a63af 314807 e3f8a4 52ea5f 583bf9 2ba423 dfbddd 2251c6 d51efc 27b2bb 356d7a 9789ee 72eb69 e85dee f64eef 2d2dde a7b330 fff8ff 8356db b16d00 f7a534 8bb972 4c462b 42eb01 3b8c97 a19141 4c41ad d77f0a d1b3b5 3e71f4 c87ff4 48765b e03fa4 e3d274 0479f5 fc8d5d f79ff0 0373dc 997777 54d4e2 534335 636929 f42652 71d5ee ff8254 fb9942 81aeba 2371b9 7ec4f0 03ee0b 6191cd 1f1fb4 82288c 2a0316 90a864 214a91 9227bf e84642 0207dc 4039ec ae6718 47d430 621a9b b95ffa 13f971 cde93e 5174ea 3fe68f b10ca7 6a11ce 595f46 569d5c 9a95a5 9bda2f c7e2fb f55b36 b5049d cd7877 ace837 e0425a 8b4f7f 9a8d4d 0983d1 936694 02d9e4 99aa38 d3b45d 2a69ce 429093 6f8e14 7e1850 e2c10d d37d0f 443759 31adf6 2398a1 0bf328 087a7c f303c9 f4fd7d 668877 f88455 8f51dd 324483 b58070 e68d11 89e79d 4d8b0f dd5f43 876844 04cd99 265d9c 0c9939 5384f3 fc4fd1 a15c03 504717 7cb651 8e06be 073466 5a3c4a 9fbe4f 4d2c10 36fff2 014c4e c9bcf7 95988c 2a48bd a8f2ac 853a62 204acd 7212ea 6d2709 4cd504 f61927 0096a8 a35b3c d967af 6cf802 12d5ab 1feda6 0c09cc 594cc3 6021ba 7ef291 83065e e9a269 7b3ac4 6395ee a51a4b faeed9 3ee358 926b36 2246a7 f5d28c d8d820 c12a41 a95b7e 9ba78a 8ff1ff c7b921 1c67c8 a1a3d4 bdf58d 9d5b81 3bb7e4 9638c1 da2fdb 292d70 f0414a 4e4380 f4750b e9c797 561d75 7c50d1 030560 522b04 813d25 0fdb94 a71381 21839d 627c9c 7ac286 4877d1 60c6da ae3110 e78989 1e47db 66eb8b 85eebc 305a29 7c78ea ae2c5d 720766 f71675 6547da 7377c8 b3c440 1faf7a 499cfc b14da0 473c36 290f36 9d7c61 b1d07b 4c6267 c941c4 448d90 b8fdcd 5aceb9 a0c85d 6e4f58 a59981 3e0817 47f6dd 7a56c2 b07652 a4eb86 08583a ad9caa bfe28b 100d3c 458a97 d1f5c5 adf5e2 e36542 050ee1 7a36e5 465810 bba4ec b63dce 25b7bd 150b3e 37e644 a6cd13 df3c07 7a85b7 dac0aa e15f43 b2583f 709905 4d0e14 9ce413 08822c 07bf27 217521 629f70 042551 27b169 eda57d d36e97 604c7c c31c10 ad96f4 124339 f1afc0 ce9a39 ecd36f 483547 0e209c faa118 3f6d40 3544a0 19d7d9 856db2 77aed2 aed6bd 4cf1e9 15b347 279e4f b8ed8f 8b4be6 4e4e0f f0bcb5 2ba627 982e3b a7dbf6 e6ff64 c26bc9 626026 bf877e e9232b 39ce44 a1f1ec 4e914f 69ca86 963daf 5d550c a5852d f5e153 f5d489 a2b0f9 f33f09 af2d4b 9d66de 739819 2853d4 b721b4 9b0388 ce5e03 2e1cc7 ef9f8a 4a23c7 ed0756 a7ac51 b468f3 a4eecf 41f67b 4c1db8 6c71c0 320dc9 97f631 829185 af0dfc 632d1c f48f54 638fa6 c1ffd4 61784f b5a382 ce4df4 a7d592 0851cf bf3e29 eac389 5a3ebf 8dff72 244127 ad04bd 097efc a2e6f9 ea304c 42c7f1 8c96a5 433d8b cbcad9 b23575 7932c3 303204 fc267b e8ce0b fa30c7 4986ed 432926 9a06fb b6b014 5752b8 c60033 a2e9dd 3db90c 411f3b d09380 a020e9 fa7251 c18c95 6e1f13 464961 dbe634 e93f43 0cc301 3c88a7 ffcc0f dbfd5b 185efc 310f36 83a535 a1e634 53026a d0c9ff a4ac32 e464ec 8621f6 154c44 eec21a cac83e 4b4816 485ab6 cecede e1e71f 18d955 4c1988 a787eb 794106 72ccda be2f32 f04e01 29c095 99a9c6 d4b0b6 c6d6e2 1df686 72b5bd aac129 67c262 13ed5e 5f9e54 cfb999 35403b 223ce1 ad8df6 5dc1c0 10ca40 c40df4 b0a4e9 ec5a44 16612f 05e9ae 90ac58 f5e0b0 9b868d 5258c0 69eb9b ce66a9 19f13b e4287f 24a793 4f3e30 534f7d 651a4a 157c33  ... 1000 of 1910 shown]
Exp(0)     [27ca8d]
Sinc(0)     [b18020]
Neg(-1)     [1eeccf 5e1d3b 72cef9 27586f a68e0e 3df748 2760e7 5dc1c0 71a264 14a365 073e1a f617c0 3478af 25435b 24a793 420007 4f3e30 54f420 303827 157c33 14ecc4 4b20ab 092cee 4c166d 62b0c4 807f3f 685d1a 001234 288207 23ed69 c640bf 68cc2f 9be916 c2dcfa ea56d1 e87c43 56d4ff 84196a 43fa0e db2b0a b93d09 a62320 6582c4 1ba9a5 5cdae6 a8b41c 34fafa c89abc fc8149 82b410 c8d10e ee86fb 632063 21d9a0 eca10b 8654a3 ed302a e04867 e50a56 5bd0ec d8155f 8a34d1 ce6dd0 b788a1 8f10b0 ec0054 b786ad 314807 12ce84 e3f8a4 a766f2 2ba423 4a2403 f95561 27b2bb d6fbc8 90af98 8db61e 356d7a 1fc63b 700d94 9789ee 0010f3 90b26f 40baa9 b3d435 4c0698 a93679 d29554 4cf228 ce8ee4 b7f13b 3c662e dfb55b 4d26ec 78131f dce62c 61d8f3 e3d274 97ba8d e37535 27766c 3047b1 534335 636929 192a3e c53d94 1b47db 276d78 6191cd 1596d2 90a864 06319a 44ad09 3fe68f f55b36 b5049d 287d9b d84519 ace837 a172c7 0983d1 99aa38 4f9844 859445 7e1850 d37d0f 99ff4c b9c650 30b67b d280c5 214b1c f4fd7d 668877 56d1bc c687d6 541e2e 781eae b6017f 8671a4 44e8fb dd5f43 51fd98 3a84d6 99dc4a 056c0e 03fbe8 737f2b 8e06be 2fec14 073466 5a3c4a ed7dac b4825b 9e30e7 853a62 506d0c 447541 7ea1ad 7212ea 9f3474 d02cf9 77e507 c4b16c 5ce30b 12d5ab 0ad263 60ac50 5fb5e2 a51a4b b0c84b 2ada0f c12a41 6e05c9 31b0df fdfb16 9ba78a 2f1f7b 301081 bfc13f 54bce2 7c90eb d8cac6 503d4d bad5d9 e9c797 ddc7e1 3d77ab 393b62 59e5df 50cb6b 60c6da 90631b 54c80d 831ea4 227d60 39b699 b14da0 473c36 8fbf69 b01280 41ece5 3d25dd 83abff 6cd4a1 be9a45 dac0bb 5e639e 7a56c2 a4eb86 08583a 0d3b91 039051 590136 071a94 e36542 1b6362 465810 54aaf1 bba4ec b63dce 674afa a14cfc a6cd13 7a85b7 dac0aa 80f20f 95f771 dec0d2 8c2862 6674bb 2dcf0c 4d0e14 ab563e 33aa62 17eaad 2a5337 ac236f acdce8 afb22a d10873 ed8ba7 f42042 e05807 9001e6 361f61 2488bb 47b181 b1a2e1 a091d1 15dd69 f697d5 fad52f a7dbf6 4e5947 9ad254 88aeb6 c574fd 4b65d0 626026 f1dd8a 2f3ed3 f35a37 7954ad 3b11d3 344963 18d335 21b67f 6a24ab f80439 df52fc 11302a a46d91 6189b9 0a7f30 3567c5 9d66de d29148 72b6ca 1c3766 3b175b ef9f8a a2675b b468f3 0c7de4 4c1db8 fc4f6a 6d936e 829185 c76eaf f340cb e5bba3 6476bd 35e13b b2162a 8547ab 35cb93 df439e 05fe07 fae9d3 8c96a5 e1797b fc3ef5 304559 5c178f fc267b e8ce0b a91200 57fcaf da0f15 55498b 01af55 36171f c7f7a5 3c2557 95e270 cdee01 8d486c a34260 e6e7a2 2ae142 54951a b66d1e d09380 268c9e 8d6a1d fe2627 545e8b 6da738 464961 fd3017 0cc301 a1e634 d923de 2573ba 2eb54a 24c9e9 675f23 7a1799 1842d9 72ccda 2c26a1 d52bda 66fefb 2a2f18 56667c]
Sqrt(1)     [9d5b81]
Gamma(2)     [19d480]
Gamma(1)     [e68d11]
AGM(1, 1)     [eb0661]
Pow(0, 0)     [d316bc]
GCD(1, 1)     [554b2e]
LCM(1, 1)     [34378a]
BarnesG(2)     [5cb675]
LandauG(0)     [177218]
Im(ConstI)     [848d97 51f9b4 d4b0b6 bcdfc6 88ad6f 83566f 235d0d 72cef9 21851b 67c262 e4cdf1 27586f a0ba58 b2a880 8be138 d5917b d7a4e5 ad8df6 8519dd 10ca40 912ff9 2f97f5 cb0a9b 14a365 acda23 3fb309 ff587a 6b9935 ad9ba2 dc7c83 483e7e 9b868d 9c93bb e1497f fc6cf6 231141 aa404c 25435b cbce7f 24a793 cf70ce e03b7c 4f0049 303827 0650f8 0ce854 106bf7 af984e 4af6db 62b0c4 74274a 078869 e00d9e b1d132 e2288d 001234 288207 b8ca70 23ed69 271314 ea56d1 cc6d21 d637c5 5b87f3 12b1d0 2f6805 026e44 00cdb7 44ae4a 1d1028 103bfb 43fa0e e28209 921ef0 0e2bcb 5ab6bf d989cd 1848f1 1cec67 298bb1 ec7f2d 0d3186 3dd162 f1a29b da1873 cd5f45 82b410 632063 c7d4c2 1fa8e7 f77752 0fda1b 21d9a0 6c28fa 2a2a38 06633e eca10b ed302a 8c9f96 e04867 7d7c65 adbc1a 8027e8 dd5787 d8cb3e 45267a d8155f 8a34d1 089f85 bac5fb 024a84 0b829e ec0054 52ea5f c743eb 2ba423 f3e75c 7348e3 dfbddd 583bf9 208da7 4a2403 ea3e3c f0981b 1699a9 07a654 1356e4 3189b9 81550a 60772e 90af98 356d7a 26faf3 1fc63b 700d94 40baa9 271b73 2d2dde fff8ff 27c319 8356db f12e20 229c97 4c462b a498dd 4d26ec a2d208 78131f a75407 727715 4f3d2b 7783f9 2f09ad 3009a8 03ad5a 53fcdd cf7ee3 61d8f3 1b2d8a f9b773 97ba8d 69d0a3 3047b1 3ac0ce 9376ec 1dc520 cf5caa 534335 64c188 f42652 71d5ee e6b579 729b70 192a3e 1ee920 871996 d45548 3be335 90a864 57d31a 3c56c7 ad8a9a ae6718 570399 c7f85b 092716 06319a 44ad09 cde93e a08fb9 6923d5 d5b7e8 3a56d8 5174ea 3fe68f 8bb3d8 3131df 6f3fec 1cb24e de0638 f551ca a41c92 3b806f 1d65c2 baf960 1232f7 99ad29 092377 bf747b e0425a cc3a51 32e162 8c4ab4 8e6867 4877f2 15bbb1 e4e707 02d9e4 951017 a20761 d3b45d 2090c3 2a69ce c4febd 77ef0c 3b839c e47bfb f9f31d 429093 72f583 7e1850 9673f7 6a6a09 c1bee1 38b4f3 d5a29e d0dfba d280c5 2d3356 b41d08 ec4f56 f4fd7d 668877 e20db0 56d1bc 541e2e d0505f 781eae e96684 127f05 324483 9b0994 b58070 22b67a c4d78a 09e2ed be8e05 80f43a 12765e 4091ad 44e8fb 4d8b0f dd5f43 0d4608 088fdb 3a84d6 876844 1a15f9 1bae52 5384f3 a46f94 48333c 7cb651 6cbce8 66df95 03fbe8 2fec14 b7174d cb6c9c 945fa5 9e30e7 9ea739 fa8e96 10cdf4 7ea1ad eca4ce 204acd 0abbe1 c4b16c a35b3c a90f35 12d5ab 594cc3 249fd6 42d832 4a200a 7f9273 e9a269 8a857c 1dcf7e 13d2a1 86bc7d a51a4b 21d9b8 630eca ed6590 bc2f88 bc4d0a 3ee358 fa65f3 c12a41 31b0df 6ae250 ad228f 390158 2f1f7b a8ea67 c7b921 bfc13f 5706ab a1a3d4 7c90eb b0e1cb 30a054 1fa6b7 67f2ef 55ee4a f0414a c0ae99 62f12c 7c50d1 c331da 348b26 e8252c 22a9cd 9b8c9f e2efbf 01440f 90631b d8025b af2ea9 cd8a07 6a7704 39b699 df88a0 cf93bc e0ac95 2e4da0 8fbf69 ba6d81 cf3c8e 290f36 5b108e 65bbd6 57af50 64d87a c941c4 457aaa 7cda09 669765 3bfced dac0bb ed4ce5 500c0a cc234c 23e0a7 799b5e 4cf4e4 7a56c2 f89d5a a4eb86 08583a 100d3c 54340e 590136 34ff28 458a97 a2189a e1dd64 ecb406 9aa62c e3e4c5 5161ab 6636f2 1eaaed 6b2078 6430cc 465810 1dce21 54aaf1 0878a4 13cac5 849751 37e644 a14cfc a6cd13 c6234b dac0aa 709905 8c2862 74be8f 0895b1 175b7a ff0c9f 6674bb 0ad836 2dcf0c 4d0e14 d98ccc 18873d e103e7 9ce413 ac236f 86d68c ebc673 499bdf ed8ba7 87e9ed ed2bf6 b120b9 35c85f a39534 f8a56f 8697b8 faa118 7af1b9 921f34 77aed2 f5a15a 5c054e 15b347 a091d1 4fe0ff 62ffb3 b65d19 1c25d3 b83f63 09c107 b0f293 b2f31a 8be46c f96eac 9ad254 08bd37 7f4c85 4a2ac8 4a4739 c574fd 626026 f1dd8a b978f0 2f3ed3 e54e61 a5e568 7954ad 3b11d3 299209 03356b 21b67f be9790 94db60 963daf 5d550c df52fc 8a316c abaf91 c43533 d11b7f 6ef3d1 0aac97 f33f09 ae76a3 5a11eb 3567c5 d29148 e0b322 7c00e6 caf8cf ed0756 6d918c 1976db e2035a b468f3 0c7de4 4c1db8 f2a0c7 6c71c0 d15f11 c718ea 3f5711 61784f 03e2a6 1403b5 7cc3d3 e20938 bf3e29 037a6e b7fec0 f0f53b caf706 b2162a 8547ab d35c54 a18b77 9522c6 ef4b53 097efc f1f42f 072166 35cb93 95e9e4 52302f 140815 d2900f ea304c f8dfaf 41631f 7b362f 77d6bf 304559 5c178f 1976e1 e8ce0b 580ba0 dd5e3a da0f15 ad91ae 4becdd 01af55 69e5fb 755655 36171f fe4967 c7f7a5 9dec3e 7902fc cbfd70 799742 47f4ba 3102a7 0701dc 18f40c cdee01 b4c968 f4e249 d6a799 2ae142 513a30 c60033 54951a 31fef8 d1a0ec b738b1 8d6a1d fe2627 737805 c18c95 cfc5c3 545e8b e2bc80 0cc301 033c51 fd3017 f68409 0b3fd6 26c47c 5d2c01 4c8873 a691b3 dbf388 a4109c 56acfe 6ade92 735409 27b2c7 08ad28 5adbc3 15f92d d923de bf8f37 c6be24 495a98 06c468 2eb54a 675f23 4256f0 321538 1842d9 be2f32 d52bda 2a2f18 f04e01 29c095 c2c002 0c8084]
Totient(1)     [6d37c9]
Totient(2)     [6d37c9]
BarnesG(1)     [5cb675]
LandauG(1)     [177218]
BarnesG(3)     [5cb675]
Log(ConstE)     [699c83]
Abs(ConstI)     [65bbd6]
Fibonacci(1)     [b506ad 9d26d2]
Neg(Neg(1))     [a2b0f9 fa6ff7]
Factorial(0)     [d8c274 3009a7]
Fibonacci(2)     [b506ad 9d26d2]
EllipticE(1)     [958a3f]
Factorial(1)     [3009a7]
BellNumber(0)     [4c6267]
BernoulliB(0)     [aed6bd]
BellNumber(1)     [4c6267]
Im(Sqrt(-1))     [72cef9 2eb54a]
PartitionsP(1)     [856db2]
PartitionsP(0)     [856db2]
Pow(ConstI, 4)     [e0425a]
CarlsonRC(1, 1)     [d38c27]
Sin(Div(Pi, 2))     [69c5ef]
Im(Sign(ConstI))     [09c107]
LambertW(0, 0, 1)     [c87ff4]
CarlsonRG(1, 1, 1)     [250ff1]
CarlsonRF(1, 1, 1)     [c166ca]
CarlsonRD(1, 1, 1)     [1c0fee]
Abs(Sqrt(ConstI))     [0ad836]
Re(Add(1, ConstI))     [62b0c4 78131f fe2627 b468f3 69d0a3 078869 0ad836 9e30e7 4c8873 e54e61 7c50d1 e2288d 2dcf0c 5d2c01]
Im(Add(1, ConstI))     [62b0c4 78131f fe2627 b468f3 69d0a3 078869 0ad836 9e30e7 4c8873 e54e61 7c50d1 e2288d 2dcf0c 5d2c01]
LambertW(0, ConstE)     [c95c4f]
Re(Sub(1, ConstI))     [630eca 62b0c4 f1dd8a 2dcf0c 5174ea e54e61 7c50d1 8519dd]
Neg(Pow(ConstI, 2))     [31b0df]
BarnesG(Pow(10, 0))     [dbc117]
CarlsonRJ(1, 1, 1, 1)     [e9d5a9]
Fibonacci(Pow(10, 0))     [5818e3]
Neg(Im(Neg(ConstI)))     [34ff28 ed0756 b738b1 6d918c d4b0b6 cbce7f cfc5c3 d8155f 1eaaed e0ac95 b120b9 4c462b 26c47c 1976e1 e8ce0b 67c262 089f85 0b829e ec7f2d 8be138 5174ea 668877 08ad28 9dec3e b65d19 9b0994 6674bb c4d78a 18f40c 4d0e14 23ed69 700d94 cf5caa 2ae142 c12a41 08bd37 44ae4a]
BellNumber(Pow(10, 0))     [7466a2]
PartitionsP(Pow(10, 0))     [9933df]
Im(Pow(-1, Div(1, 2)))     [27586f]
Neg(Im(Pow(ConstI, 3)))     [8be138]
Neg(Im(Sub(1, ConstI)))     [630eca 62b0c4 f1dd8a 2dcf0c 5174ea e54e61 7c50d1 8519dd]
Neg(Im(Div(1, ConstI)))     [67c262]
Cardinality(Set(List()))     [cebe1b]
Im(CarlsonRD(-1, -1, -1))     [4a2403]
Cardinality(Set(List(1)))     [e84642]
Re(Add(1, Div(ConstI, 2)))     [583bf9 324483]
Re(Add(1, Mul(6, ConstI)))     [5384f3]
Re(Add(1, Mul(8, ConstI)))     [e2bc80]
Re(Add(1, Mul(2, ConstI)))     [b58070]
Re(Add(1, Mul(4, ConstI)))     [6cbce8]
Neg(Im(Conjugate(ConstI)))     [44ae4a]
Re(Add(1, Mul(10, ConstI)))     [390158]
Re(Add(1, Mul(12, ConstI)))     [675f23]
Im(CarlsonRJ(-1, -1, -1, -1))     [a091d1]
Neg(Sin(Div(Mul(3, Pi), 2)))     [56667c]
Neg(Im(CarlsonRF(-1, -1, -1)))     [6674bb]
Neg(Re(Exp(Mul(Pi, ConstI))))     [271314 54aaf1]
Re(Add(1, Mul(Sqrt(3), ConstI)))     [0abbe1]
Re(Add(1, Mul(Sqrt(7), ConstI)))     [29c095]
Im(Exp(Div(Mul(Pi, ConstI), 2)))     [a90f35]
Re(Sub(1, Mul(Sqrt(3), ConstI)))     [175b7a]
JacobiTheta(3, 0, Mul(45, ConstI))     [6ade92]
IncompleteEllipticE(Div(Pi, 2), 1)     [b62aae]
Re(Add(1, Mul(Sqrt(19), ConstI)))     [3ee358]
Neg(ModularLambda(Add(1, ConstI)))     [fe2627]
Re(Add(1, Mul(Sqrt(43), ConstI)))     [5b108e]
Abs(Exp(Div(Mul(Pi, ConstI), 5)))     [7a56c2]
Abs(Exp(Div(Mul(Pi, ConstI), 4)))     [cde93e 6b2078 4d0e14]
Re(Add(1, Mul(Sqrt(67), ConstI)))     [951017]
Re(Add(1, Mul(Sqrt(11), ConstI)))     [a498dd]
Abs(Exp(Div(Mul(Pi, ConstI), 3)))     [0c7de4 ec0054 0c8084 9aa62c]
Abs(Exp(Div(Mul(Pi, ConstI), 24)))     [a1a3d4]
Re(Add(1, Mul(Sqrt(163), ConstI)))     [1cb24e]
Abs(Exp(Div(Mul(ConstI, Pi), 12)))     [0abbe1]
Abs(Exp(Div(Mul(Pi, ConstI), 12)))     [1bae52]
Maximum(Sinc(x), ForElement(x, RR))     [632d1c]
Sub(Pow(GoldenRatio, 2), GoldenRatio)     [b464d3]
Abs(Neg(Exp(Div(Mul(Pi, ConstI), 5))))     [7a56c2]
Neg(Re(Add(-1, Mul(Sqrt(3), ConstI))))     [21b67f]
Abs(Neg(Exp(Div(Mul(Pi, ConstI), 3))))     [0c7de4 ec0054]
ComplexDerivative(BarnesG(z), For(z, 0))     [90b367]
Abs(Exp(Neg(Div(Mul(Pi, ConstI), 24))))     [204acd]
Abs(Exp(Neg(Div(Mul(ConstI, Pi), 12))))     [175b7a]
Abs(Exp(Div(Mul(Mul(4, Pi), ConstI), 5)))     [7a56c2]
Abs(Exp(Div(Mul(Mul(2, Pi), ConstI), 5)))     [7a56c2]
Abs(Div(Add(1, Mul(Sqrt(3), ConstI)), 2))     [0abbe1]
Neg(Re(LambertW(0, Neg(Div(1, ConstE)))))     [b93d09]
Abs(Div(Sub(1, Mul(Sqrt(3), ConstI)), 2))     [175b7a]
Abs(Exp(Div(Mul(Mul(3, Pi), ConstI), 5)))     [7a56c2]
Abs(Exp(Div(Mul(Mul(2, Pi), ConstI), 3)))     [ea3e3c 4af6db 1b2d8a 4a200a 204acd ad91ae 13cac5 0c7de4 21b67f 83566f b0e1cb 3102a7 6c71c0 298bb1 ec0054 0fda1b 26faf3 30a054 9ea739]
Abs(Mul(Div(1, Sqrt(2)), Add(1, ConstI)))     [0ad836]
Abs(Div(Add(-1, Mul(Sqrt(3), ConstI)), 2))     [21b67f]
Neg(Re(LambertW(-1, Neg(Div(1, ConstE)))))     [d09380]
Maximum(Brackets(Sin(x)), ForElement(x, RR))     [bfe28b]
Abs(Neg(Exp(Div(Mul(Mul(4, Pi), ConstI), 5))))     [7a56c2]
Abs(Neg(Exp(Div(Mul(Mul(2, Pi), ConstI), 3))))     [0c7de4 ec0054]
Abs(Neg(Exp(Div(Mul(Mul(3, Pi), ConstI), 5))))     [7a56c2]
Abs(Neg(Exp(Div(Mul(Mul(2, Pi), ConstI), 5))))     [7a56c2]
SequenceLimitSuperior(Div(Totient(n), n), For(n, Infinity))     [cd7877]
SequenceLimit(Div(Log(LandauG(n)), Sqrt(Mul(n, Log(n)))), For(n, Infinity))     [a3ab2a]
Integral(Div(Pow(JacobiTheta(4, 0, Mul(ConstI, t)), 2), Add(1, Pow(t, 2))), For(t, 0, Infinity))     [963daf]
CarlsonRF(0, Div(Pow(Gamma(Div(1, 4)), 4), Mul(16, Pi)), Div(Pow(Gamma(Div(1, 4)), 4), Mul(32, Pi)))     [67e015]
Re(CarlsonRF(0, Div(Pow(Gamma(Div(1, 4)), 4), Mul(32, Pi)), Div(Neg(Pow(Gamma(Div(1, 4)), 4)), Mul(32, Pi))))     [8519dd]
Neg(Im(CarlsonRF(0, Div(Pow(Gamma(Div(1, 4)), 4), Mul(32, Pi)), Div(Neg(Pow(Gamma(Div(1, 4)), 4)), Mul(32, Pi)))))     [8519dd]
Integral(Mul(Pow(JacobiTheta(2, 0, Mul(ConstI, t)), 4), Pow(JacobiTheta(4, 0, Mul(ConstI, t)), 2)), For(t, 0, Infinity))     [02d9e4]
Integral(Mul(Pow(JacobiTheta(2, 0, Mul(ConstI, t)), 2), Pow(JacobiTheta(4, 0, Mul(ConstI, t)), 2)), For(t, 0, Infinity))     [ea304c]
Mul(Brackets(Div(Add(Add(3, Sqrt(5)), Mul(Add(Add(Sqrt(3), Sqrt(5)), Pow(60, Div(1, 4))), Pow(Add(2, Sqrt(3)), Div(1, 3)))), Mul(3, Sqrt(Add(10, Mul(10, Sqrt(5))))))), JacobiTheta(3, 0, ConstI))     [6ade92]
Decimal("1")     [7466a2 5818e3 dbc117 9933df 9d5b81]
Decimal("1.00000000000000000000000000000")     [0983d1 aed6bd]
2182 (#1)

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC