Fungrim home page

Fungrim entry: 2f09ad

sinc()=limxsinc ⁣(ai+x)=0\operatorname{sinc}(\infty) = \lim_{x \to \infty} \operatorname{sinc}\!\left(a i + x\right) = 0
Assumptions:aCa \in \mathbb{C}
\operatorname{sinc}(\infty) = \lim_{x \to \infty} \operatorname{sinc}\!\left(a i + x\right) = 0

a \in \mathbb{C}
Fungrim symbol Notation Short description
Sincsinc(z)\operatorname{sinc}(z) Sinc function
Infinity\infty Positive infinity
RealLimitlimxaf(x)\lim_{x \to a} f(x) Limiting value, real variable
ConstIii Imaginary unit
CCC\mathbb{C} Complex numbers
Source code for this entry:
    Formula(Equal(Sinc(Infinity), RealLimit(Sinc(Add(Mul(a, ConstI), x)), For(x, Infinity)), 0)),
    Assumptions(Element(a, CC)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2020-08-27 09:56:25.682319 UTC