Fungrim home page

Fungrim entry: 5aceb9

Jν ⁣(z)=Jν1 ⁣(z)Jν+1 ⁣(z)2J'_{\nu}\!\left(z\right) = \frac{J_{\nu - 1}\!\left(z\right) - J_{\nu + 1}\!\left(z\right)}{2}
Assumptions:νZ  and  zC\nu \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}
Alternative assumptions:νC  and  zC{0}\nu \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left\{0\right\}
J'_{\nu}\!\left(z\right) = \frac{J_{\nu - 1}\!\left(z\right) - J_{\nu + 1}\!\left(z\right)}{2}

\nu \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}

\nu \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left\{0\right\}
Fungrim symbol Notation Short description
BesselJJν ⁣(z)J_{\nu}\!\left(z\right) Bessel function of the first kind
ZZZ\mathbb{Z} Integers
CCC\mathbb{C} Complex numbers
Source code for this entry:
    Formula(Equal(BesselJ(nu, z, 1), Div(Sub(BesselJ(Sub(nu, 1), z), BesselJ(Add(nu, 1), z)), 2))),
    Variables(nu, z),
    Assumptions(And(Element(nu, ZZ), Element(z, CC)), And(Element(nu, CC), Element(z, SetMinus(CC, Set(0))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC