Fungrim home page

Fungrim entry: 1c3766

sinc(n)(0)={(1)n/21n+1,n even0,n odd{\operatorname{sinc}}^{(n)}(0) = \begin{cases} {\left(-1\right)}^{\left\lfloor n / 2 \right\rfloor} \frac{1}{n + 1}, & n \text{ even}\\0, & n \text{ odd}\\ \end{cases}
Assumptions:nZ0n \in \mathbb{Z}_{\ge 0}
{\operatorname{sinc}}^{(n)}(0) = \begin{cases} {\left(-1\right)}^{\left\lfloor n / 2 \right\rfloor} \frac{1}{n + 1}, & n \text{ even}\\0, & n \text{ odd}\\ \end{cases}

n \in \mathbb{Z}_{\ge 0}
Fungrim symbol Notation Short description
ComplexDerivativeddzf ⁣(z)\frac{d}{d z}\, f\!\left(z\right) Complex derivative
Sincsinc(z)\operatorname{sinc}(z) Sinc function
Powab{a}^{b} Power
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Source code for this entry:
    Formula(Equal(ComplexDerivative(Sinc(z), For(z, 0, n)), Cases(Tuple(Mul(Pow(-1, Floor(Div(n, 2))), Div(1, Add(n, 1))), Even(n)), Tuple(0, Odd(n))))),
    Assumptions(Element(n, ZZGreaterEqual(0))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC