Fungrim home page

Fungrim entry: 3ac0ce

Im ⁣(ψ ⁣(i))=12(πcoth(π)+1)\operatorname{Im}\!\left(\psi\!\left(i\right)\right) = \frac{1}{2} \left(\pi \coth(\pi) + 1\right)
\operatorname{Im}\!\left(\psi\!\left(i\right)\right) = \frac{1}{2} \left(\pi \coth(\pi) + 1\right)
Fungrim symbol Notation Short description
ImIm(z)\operatorname{Im}(z) Imaginary part
DigammaFunctionψ ⁣(z)\psi\!\left(z\right) Digamma function
ConstIii Imaginary unit
Piπ\pi The constant pi (3.14...)
Source code for this entry:
    Formula(Equal(Im(DigammaFunction(ConstI)), Mul(Div(1, 2), Add(Mul(Pi, Coth(Pi)), 1)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC