Fungrim home page

Fungrim entry: a3ab2a

limnlog ⁣(g(n))nlog(n)=1\lim_{n \to \infty} \frac{\log\!\left(g(n)\right)}{\sqrt{n \log(n)}} = 1
\lim_{n \to \infty} \frac{\log\!\left(g(n)\right)}{\sqrt{n \log(n)}} = 1
Fungrim symbol Notation Short description
SequenceLimitlimnaf(n)\lim_{n \to a} f(n) Limiting value of sequence
Loglog(z)\log(z) Natural logarithm
LandauGg(n)g(n) Landau's function
Sqrtz\sqrt{z} Principal square root
Infinity\infty Positive infinity
Source code for this entry:
    Formula(Equal(SequenceLimit(Div(Log(LandauG(n)), Sqrt(Mul(n, Log(n)))), For(n, Infinity)), 1)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC