Fungrim home page

Fungrim entry: ecb406

0θ2 ⁣(0,it)dt=π\int_{0}^{\infty} \theta_{2}\!\left(0 , i t\right) \, dt = \pi
\int_{0}^{\infty} \theta_{2}\!\left(0 , i t\right) \, dt = \pi
Fungrim symbol Notation Short description
Integralabf(x)dx\int_{a}^{b} f(x) \, dx Integral
JacobiThetaθj ⁣(z,τ)\theta_{j}\!\left(z , \tau\right) Jacobi theta function
ConstIii Imaginary unit
Infinity\infty Positive infinity
Piπ\pi The constant pi (3.14...)
Source code for this entry:
    Formula(Equal(Integral(JacobiTheta(2, 0, Mul(ConstI, t)), For(t, 0, Infinity)), Pi)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC