Fungrim home page

Fungrim entry: f3e75c

θ3 ⁣(z,τ)=1+2n=1qn2cos ⁣(2nπz)   where q=eπiτ\theta_{3}\!\left(z , \tau\right) = 1 + 2 \sum_{n=1}^{\infty} {q}^{{n}^{2}} \cos\!\left(2 n \pi z\right)\; \text{ where } q = {e}^{\pi i \tau}
Assumptions:zC  and  τHz \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}
\theta_{3}\!\left(z , \tau\right) = 1 + 2 \sum_{n=1}^{\infty} {q}^{{n}^{2}} \cos\!\left(2 n \pi z\right)\; \text{ where } q = {e}^{\pi i \tau}

z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}
Fungrim symbol Notation Short description
JacobiThetaθj ⁣(z,τ)\theta_{j}\!\left(z , \tau\right) Jacobi theta function
Sumnf(n)\sum_{n} f(n) Sum
Powab{a}^{b} Power
Coscos(z)\cos(z) Cosine
Piπ\pi The constant pi (3.14...)
Infinity\infty Positive infinity
Expez{e}^{z} Exponential function
ConstIii Imaginary unit
CCC\mathbb{C} Complex numbers
HHH\mathbb{H} Upper complex half-plane
Source code for this entry:
    Formula(Equal(JacobiTheta(3, z, tau), Where(Add(1, Mul(2, Sum(Mul(Pow(q, Pow(n, 2)), Cos(Mul(Mul(Mul(2, n), Pi), z))), For(n, 1, Infinity)))), Equal(q, Exp(Mul(Mul(Pi, ConstI), tau)))))),
    Variables(z, tau),
    Assumptions(And(Element(z, CC), Element(tau, HH))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC