Fungrim home page

Fungrim entry: e8252c

λ ⁣(i)=limτiλ(τ)=0\lambda\!\left(i \infty\right) = \lim_{\tau \to i \infty} \lambda(\tau) = 0
\lambda\!\left(i \infty\right) = \lim_{\tau \to i \infty} \lambda(\tau) = 0
Fungrim symbol Notation Short description
ModularLambdaλ(τ)\lambda(\tau) Modular lambda function
ConstIii Imaginary unit
Infinity\infty Positive infinity
ComplexLimitlimzaf(z)\lim_{z \to a} f(z) Limiting value, complex variable
Source code for this entry:
    Formula(Equal(ModularLambda(Mul(ConstI, Infinity)), ComplexLimit(ModularLambda(tau), For(tau, Mul(ConstI, Infinity))), 0)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC