Fungrim home page

Fungrim entry: 2246a7

G2k ⁣(τ)=(m,n)Z2{(0,0)}1(mτ+n)2kG_{2 k}\!\left(\tau\right) = \sum_{\left(m, n\right) \in {\mathbb{Z}}^{2} \setminus \left\{\left(0, 0\right)\right\}} \frac{1}{{\left(m \tau + n\right)}^{2 k}}
Assumptions:kZ2  and  τHk \in \mathbb{Z}_{\ge 2} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}
G_{2 k}\!\left(\tau\right) = \sum_{\left(m, n\right) \in {\mathbb{Z}}^{2} \setminus \left\{\left(0, 0\right)\right\}} \frac{1}{{\left(m \tau + n\right)}^{2 k}}

k \in \mathbb{Z}_{\ge 2} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}
Fungrim symbol Notation Short description
EisensteinGGk ⁣(τ)G_{k}\!\left(\tau\right) Eisenstein series
Sumnf(n)\sum_{n} f(n) Sum
Powab{a}^{b} Power
ZZZ\mathbb{Z} Integers
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
HHH\mathbb{H} Upper complex half-plane
Source code for this entry:
    Formula(Equal(EisensteinG(Mul(2, k), tau), Sum(Div(1, Pow(Add(Mul(m, tau), n), Mul(2, k))), ForElement(Tuple(m, n), SetMinus(Pow(ZZ, 2), Set(Tuple(0, 0))))))),
    Variables(k, tau),
    Assumptions(And(Element(k, ZZGreaterEqual(2)), Element(tau, HH))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC