Fungrim home page

Fungrim entry: 22b67a

n=11Fn2=524(θ24 ⁣(0,τ)θ44 ⁣(0,τ)+1)   where τ=1πilog ⁣(352)\sum_{n=1}^{\infty} \frac{1}{F_{n}^{2}} = \frac{5}{24} \left(\theta_{2}^{4}\!\left(0, \tau\right) - \theta_{4}^{4}\!\left(0, \tau\right) + 1\right)\; \text{ where } \tau = \frac{1}{\pi i} \log\!\left(\frac{3 - \sqrt{5}}{2}\right)
  • J. M. Borwein and P. B. Borwein. Pi and the AGM. Wiley, New York, 1987.
\sum_{n=1}^{\infty} \frac{1}{F_{n}^{2}} = \frac{5}{24} \left(\theta_{2}^{4}\!\left(0, \tau\right) - \theta_{4}^{4}\!\left(0, \tau\right) + 1\right)\; \text{ where } \tau = \frac{1}{\pi i} \log\!\left(\frac{3 - \sqrt{5}}{2}\right)
Fungrim symbol Notation Short description
Sumnf(n)\sum_{n} f(n) Sum
Powab{a}^{b} Power
FibonacciFnF_{n} Fibonacci number
Infinity\infty Positive infinity
JacobiThetaθj ⁣(z,τ)\theta_{j}\!\left(z , \tau\right) Jacobi theta function
Piπ\pi The constant pi (3.14...)
ConstIii Imaginary unit
Loglog(z)\log(z) Natural logarithm
Sqrtz\sqrt{z} Principal square root
Source code for this entry:
    Formula(Equal(Sum(Div(1, Pow(Fibonacci(n), 2)), For(n, 1, Infinity)), Where(Mul(Div(5, 24), Add(Sub(Pow(JacobiTheta(2, 0, tau), 4), Pow(JacobiTheta(4, 0, tau), 4)), 1)), Equal(tau, Mul(Div(1, Mul(Pi, ConstI)), Log(Div(Sub(3, Sqrt(5)), 2))))))),
    References("J. M. Borwein and P. B. Borwein. Pi and the AGM. Wiley, New York, 1987."))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC