# Fungrim entry: 5ab6bf

$R_F\!\left(-x, -y, -z\right) = -i R_F\!\left(x, y, z\right)$
Assumptions:$x \in \left[0, \infty\right) \;\mathbin{\operatorname{and}}\; y \in \left[0, \infty\right) \;\mathbin{\operatorname{and}}\; z \in \left[0, \infty\right)$
TeX:
R_F\!\left(-x, -y, -z\right) = -i R_F\!\left(x, y, z\right)

x \in \left[0, \infty\right) \;\mathbin{\operatorname{and}}\; y \in \left[0, \infty\right) \;\mathbin{\operatorname{and}}\; z \in \left[0, \infty\right)
Definitions:
Fungrim symbol Notation Short description
CarlsonRF$R_F\!\left(x, y, z\right)$ Carlson symmetric elliptic integral of the first kind
ConstI$i$ Imaginary unit
ClosedOpenInterval$\left[a, b\right)$ Closed-open interval
Infinity$\infty$ Positive infinity
Source code for this entry:
Entry(ID("5ab6bf"),
Formula(Equal(CarlsonRF(Neg(x), Neg(y), Neg(z)), Neg(Mul(ConstI, CarlsonRF(x, y, z))))),
Variables(x, y, z),
Assumptions(And(Element(x, ClosedOpenInterval(0, Infinity)), Element(y, ClosedOpenInterval(0, Infinity)), Element(z, ClosedOpenInterval(0, Infinity)))))

## Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC