Fungrim home page

Fungrim entry: abaf91

sin ⁣(x+iy)=sin2 ⁣(x)+sinh2 ⁣(y)\left|\sin\!\left(x + i y\right)\right| = \sqrt{\sin^{2}\!\left(x\right) + \sinh^{2}\!\left(y\right)}
Assumptions:xR  and  yRx \in \mathbb{R} \;\mathbin{\operatorname{and}}\; y \in \mathbb{R}
\left|\sin\!\left(x + i y\right)\right| = \sqrt{\sin^{2}\!\left(x\right) + \sinh^{2}\!\left(y\right)}

x \in \mathbb{R} \;\mathbin{\operatorname{and}}\; y \in \mathbb{R}
Fungrim symbol Notation Short description
Absz\left|z\right| Absolute value
Sinsin(z)\sin(z) Sine
ConstIii Imaginary unit
Sqrtz\sqrt{z} Principal square root
Powab{a}^{b} Power
RRR\mathbb{R} Real numbers
Source code for this entry:
    Formula(Equal(Abs(Sin(Add(x, Mul(ConstI, y)))), Sqrt(Add(Pow(Sin(x), 2), Pow(Sinh(y), 2))))),
    Variables(x, y),
    Assumptions(And(Element(x, RR), Element(y, RR))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC