Fungrim home page

Fungrim entry: 68cc2f

Yν(r) ⁣(z)=12rk=0r(1)k(rk)Yν+2kr ⁣(z)Y^{(r)}_{\nu}\!\left(z\right) = \frac{1}{{2}^{r}} \sum_{k=0}^{r} {\left(-1\right)}^{k} {r \choose k} Y_{\nu + 2 k - r}\!\left(z\right)
Assumptions:νC  and  zC{0}  and  rZ0\nu \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left\{0\right\} \;\mathbin{\operatorname{and}}\; r \in \mathbb{Z}_{\ge 0}
Y^{(r)}_{\nu}\!\left(z\right) = \frac{1}{{2}^{r}} \sum_{k=0}^{r} {\left(-1\right)}^{k} {r \choose k} Y_{\nu + 2 k - r}\!\left(z\right)

\nu \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left\{0\right\} \;\mathbin{\operatorname{and}}\; r \in \mathbb{Z}_{\ge 0}
Fungrim symbol Notation Short description
BesselYYν ⁣(z)Y_{\nu}\!\left(z\right) Bessel function of the second kind
Powab{a}^{b} Power
Sumnf(n)\sum_{n} f(n) Sum
Binomial(nk){n \choose k} Binomial coefficient
CCC\mathbb{C} Complex numbers
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Source code for this entry:
    Formula(Equal(BesselY(nu, z, r), Mul(Div(1, Pow(2, r)), Sum(Mul(Mul(Pow(-1, k), Binomial(r, k)), BesselY(Sub(Add(nu, Mul(2, k)), r), z)), For(k, 0, r))))),
    Variables(nu, z, r),
    Assumptions(And(Element(nu, CC), Element(z, SetMinus(CC, Set(0))), Element(r, ZZGreaterEqual(0)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC