Fungrim home page

Fungrim entry: 66fefb

01xxdx=n=1(1)n+1nn\int_{0}^{1} {x}^{x} \, dx = \sum_{n=1}^{\infty} {\left(-1\right)}^{n + 1} {n}^{-n}
\int_{0}^{1} {x}^{x} \, dx = \sum_{n=1}^{\infty} {\left(-1\right)}^{n + 1} {n}^{-n}
Fungrim symbol Notation Short description
Integralabf(x)dx\int_{a}^{b} f(x) \, dx Integral
Powab{a}^{b} Power
Sumnf(n)\sum_{n} f(n) Sum
Infinity\infty Positive infinity
Source code for this entry:
    Formula(Equal(Integral(Pow(x, x), For(x, 0, 1)), Sum(Mul(Pow(-1, Add(n, 1)), Pow(n, Neg(n))), For(n, 1, Infinity)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC