Fungrim home page

Fungrim entry: 9d7c61

n=0Tn ⁣(x)znn!=ezxcosh ⁣(zx21)\sum_{n=0}^{\infty} T_{n}\!\left(x\right) \frac{{z}^{n}}{n !} = {e}^{z x} \cosh\!\left(z \sqrt{{x}^{2} - 1}\right)
Assumptions:xC  and  zCx \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}
\sum_{n=0}^{\infty} T_{n}\!\left(x\right) \frac{{z}^{n}}{n !} = {e}^{z x} \cosh\!\left(z \sqrt{{x}^{2} - 1}\right)

x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}
Fungrim symbol Notation Short description
Sumnf(n)\sum_{n} f(n) Sum
ChebyshevTTn ⁣(x)T_{n}\!\left(x\right) Chebyshev polynomial of the first kind
Powab{a}^{b} Power
Factorialn!n ! Factorial
Infinity\infty Positive infinity
Expez{e}^{z} Exponential function
Sqrtz\sqrt{z} Principal square root
CCC\mathbb{C} Complex numbers
Source code for this entry:
    Formula(Equal(Sum(Mul(ChebyshevT(n, x), Div(Pow(z, n), Factorial(n))), For(n, 0, Infinity)), Mul(Exp(Mul(z, x)), Cosh(Mul(z, Sqrt(Sub(Pow(x, 2), 1))))))),
    Variables(x, z),
    Assumptions(And(Element(x, CC), Element(z, CC))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC