Fungrim home page

Fungrim entry: 5eb446

k=0nF2k+1=F2n+2\sum_{k=0}^{n} F_{2 k + 1} = F_{2 n + 2}
Assumptions:nZ0n \in \mathbb{Z}_{\ge 0}
\sum_{k=0}^{n} F_{2 k + 1} = F_{2 n + 2}

n \in \mathbb{Z}_{\ge 0}
Fungrim symbol Notation Short description
Sumnf(n)\sum_{n} f(n) Sum
FibonacciFnF_{n} Fibonacci number
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Source code for this entry:
    Formula(Equal(Sum(Fibonacci(Add(Mul(2, k), 1)), For(k, 0, n)), Fibonacci(Add(Mul(2, n), 2)))),
    Assumptions(Element(n, ZZGreaterEqual(0))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC