Fungrim home page

Fungrim entry: f9f31d

eiθ=eiθ/2\sqrt{{e}^{i \theta} \infty} = {e}^{i \theta / 2} \infty
Assumptions:θ(π,π]\theta \in \left(-\pi, \pi\right]
\sqrt{{e}^{i \theta} \infty} = {e}^{i \theta / 2} \infty

\theta \in \left(-\pi, \pi\right]
Fungrim symbol Notation Short description
Sqrtz\sqrt{z} Principal square root
Expez{e}^{z} Exponential function
ConstIii Imaginary unit
Infinity\infty Positive infinity
OpenClosedInterval(a,b]\left(a, b\right] Open-closed interval
Piπ\pi The constant pi (3.14...)
Source code for this entry:
    Formula(Equal(Sqrt(Mul(Exp(Mul(ConstI, theta)), Infinity)), Mul(Exp(Div(Mul(ConstI, theta), 2)), Infinity))),
    Assumptions(Element(theta, OpenClosedInterval(Neg(Pi), Pi))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC