Fungrim home page

Fungrim entry: 4f3d2b

0(θ42 ⁣(0,it)1)dt=log(2)\int_{0}^{\infty} \left(\theta_{4}^{2}\!\left(0, i t\right) - 1\right) \, dt = -\log(2)
\int_{0}^{\infty} \left(\theta_{4}^{2}\!\left(0, i t\right) - 1\right) \, dt = -\log(2)
Fungrim symbol Notation Short description
Integralabf(x)dx\int_{a}^{b} f(x) \, dx Integral
Powab{a}^{b} Power
JacobiThetaθj ⁣(z,τ)\theta_{j}\!\left(z , \tau\right) Jacobi theta function
ConstIii Imaginary unit
Infinity\infty Positive infinity
Loglog(z)\log(z) Natural logarithm
Source code for this entry:
    Formula(Equal(Integral(Parentheses(Sub(Pow(JacobiTheta(4, 0, Mul(ConstI, t)), 2), 1)), For(t, 0, Infinity)), Neg(Log(2)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC