Fungrim home page

Fungrim entry: 3f5711

φ(n)=k=1ngcd ⁣(n,k)e2πik/n\varphi(n) = \sum_{k=1}^{n} \gcd\!\left(n, k\right) {e}^{2 \pi i k / n}
Assumptions:nZ0n \in \mathbb{Z}_{\ge 0}
\varphi(n) = \sum_{k=1}^{n} \gcd\!\left(n, k\right) {e}^{2 \pi i k / n}

n \in \mathbb{Z}_{\ge 0}
Fungrim symbol Notation Short description
Totientφ(n)\varphi(n) Euler totient function
Sumnf(n)\sum_{n} f(n) Sum
GCDgcd ⁣(a,b)\gcd\!\left(a, b\right) Greatest common divisor
Expez{e}^{z} Exponential function
Piπ\pi The constant pi (3.14...)
ConstIii Imaginary unit
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Source code for this entry:
    Formula(Equal(Totient(n), Sum(Mul(GCD(n, k), Exp(Div(Mul(Mul(Mul(2, Pi), ConstI), k), n))), For(k, 1, n)))),
    Assumptions(Element(n, ZZGreaterEqual(0))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC