Fungrim home page

Fungrim entry: 9fbe4f

{n+1k}=k{nk}+{nk1}\left\{{n + 1 \atop k}\right\} = k \left\{{n \atop k}\right\} + \left\{{n \atop k - 1}\right\}
Assumptions:nZ0  and  kZ1n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; k \in \mathbb{Z}_{\ge 1}
\left\{{n + 1 \atop k}\right\} = k \left\{{n \atop k}\right\} + \left\{{n \atop k - 1}\right\}

n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; k \in \mathbb{Z}_{\ge 1}
Fungrim symbol Notation Short description
StirlingS2{nk}\left\{{n \atop k}\right\} Stirling number of the second kind
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Source code for this entry:
    Formula(Equal(StirlingS2(Add(n, 1), k), Add(Mul(k, StirlingS2(n, k)), StirlingS2(n, Sub(k, 1))))),
    Variables(n, k),
    Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(k, ZZGreaterEqual(1)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC