Fungrim home page

Fungrim entry: 3e0817

Bn,χ=qn1a=1qχ(a)Bn ⁣(aq)B_{n,\chi} = {q}^{n - 1} \sum_{a=1}^{q} \chi(a) B_{n}\!\left(\frac{a}{q}\right)
Assumptions:qZ1  and  χGq  and  nZ0q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G_{q} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 0}
B_{n,\chi} = {q}^{n - 1} \sum_{a=1}^{q} \chi(a) B_{n}\!\left(\frac{a}{q}\right)

q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G_{q} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 0}
Fungrim symbol Notation Short description
GeneralizedBernoulliBBn,χB_{n,\chi} Generalized Bernoulli number
Powab{a}^{b} Power
Sumnf(n)\sum_{n} f(n) Sum
BernoulliPolynomialBn ⁣(z)B_{n}\!\left(z\right) Bernoulli polynomial
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
DirichletGroupGqG_{q} Dirichlet characters with given modulus
Source code for this entry:
    Formula(Equal(GeneralizedBernoulliB(n, chi), Mul(Pow(q, Sub(n, 1)), Sum(Mul(chi(a), BernoulliPolynomial(n, Div(a, q))), For(a, 1, q))))),
    Variables(q, chi, n),
    Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, DirichletGroup(q)), Element(n, ZZGreaterEqual(0)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC