Fungrim home page

Fungrim entry: a1f1ec

γ=lims1[ζ ⁣(s)1s1]\gamma = \lim_{s \to 1} \left[\zeta\!\left(s\right) - \frac{1}{s - 1}\right]
\gamma = \lim_{s \to 1} \left[\zeta\!\left(s\right) - \frac{1}{s - 1}\right]
Fungrim symbol Notation Short description
ConstGammaγ\gamma The constant gamma (0.577...)
ComplexLimitlimzaf(z)\lim_{z \to a} f(z) Limiting value, complex variable
RiemannZetaζ ⁣(s)\zeta\!\left(s\right) Riemann zeta function
Source code for this entry:
    Formula(Equal(ConstGamma, ComplexLimit(Brackets(Sub(RiemannZeta(s), Div(1, Sub(s, 1)))), For(s, 1)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC