Fungrim home page

Fungrim entry: 692e42

zerossCζ ⁣(s)={2n:nZ1}{ρn:nZ  and  n0}\mathop{\operatorname{zeros}\,}\limits_{s \in \mathbb{C}} \zeta\!\left(s\right) = \left\{ -2 n : n \in \mathbb{Z}_{\ge 1} \right\} \cup \left\{ \rho_{n} : n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; n \ne 0 \right\}
\mathop{\operatorname{zeros}\,}\limits_{s \in \mathbb{C}} \zeta\!\left(s\right) = \left\{ -2 n : n \in \mathbb{Z}_{\ge 1} \right\} \cup \left\{ \rho_{n} : n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; n \ne 0 \right\}
Fungrim symbol Notation Short description
ZeroszerosxSf(x)\mathop{\operatorname{zeros}\,}\limits_{x \in S} f(x) Zeros (roots) of function
RiemannZetaζ ⁣(s)\zeta\!\left(s\right) Riemann zeta function
CCC\mathbb{C} Complex numbers
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
RiemannZetaZeroρn\rho_{n} Nontrivial zero of the Riemann zeta function
ZZZ\mathbb{Z} Integers
Source code for this entry:
    Formula(Equal(Zeros(RiemannZeta(s), ForElement(s, CC)), Union(Set(Neg(Mul(2, n)), ForElement(n, ZZGreaterEqual(1))), Set(RiemannZetaZero(n), For(n), And(Element(n, ZZ), NotEqual(n, 0)))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC