Fungrim home page

Fungrim entry: d967af

θ1(2r) ⁣(0,τ)=0\theta^{(2 r)}_{1}\!\left(0 , \tau\right) = 0
Assumptions:τH  and  rZ0\tau \in \mathbb{H} \;\mathbin{\operatorname{and}}\; r \in \mathbb{Z}_{\ge 0}
\theta^{(2 r)}_{1}\!\left(0 , \tau\right) = 0

\tau \in \mathbb{H} \;\mathbin{\operatorname{and}}\; r \in \mathbb{Z}_{\ge 0}
Fungrim symbol Notation Short description
JacobiThetaθj ⁣(z,τ)\theta_{j}\!\left(z , \tau\right) Jacobi theta function
HHH\mathbb{H} Upper complex half-plane
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Source code for this entry:
    Formula(Equal(JacobiTheta(1, 0, tau, Mul(2, r)), 0)),
    Variables(tau, r),
    Assumptions(And(Element(tau, HH), Element(r, ZZGreaterEqual(0)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC