Fungrim home page

Fungrim entry: 9ea739

G2 ⁣(e2πi/3)=2π3G_{2}\!\left({e}^{2 \pi i / 3}\right) = \frac{2 \pi}{\sqrt{3}}
G_{2}\!\left({e}^{2 \pi i / 3}\right) = \frac{2 \pi}{\sqrt{3}}
Fungrim symbol Notation Short description
EisensteinGGk ⁣(τ)G_{k}\!\left(\tau\right) Eisenstein series
Expez{e}^{z} Exponential function
Piπ\pi The constant pi (3.14...)
ConstIii Imaginary unit
Sqrtz\sqrt{z} Principal square root
Source code for this entry:
    Formula(Equal(EisensteinG(2, Exp(Div(Mul(Mul(2, Pi), ConstI), 3))), Div(Mul(2, Pi), Sqrt(3)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC