Fungrim home page

Fungrim entry: e2c10d

sinc ⁣(az)=1a0acos ⁣(zx)dx\operatorname{sinc}\!\left(a z\right) = \frac{1}{a} \int_{0}^{a} \cos\!\left(z x\right) \, dx
Assumptions:zC  and  aC  and  a0z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; a \ne 0
\operatorname{sinc}\!\left(a z\right) = \frac{1}{a} \int_{0}^{a} \cos\!\left(z x\right) \, dx

z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; a \ne 0
Fungrim symbol Notation Short description
Sincsinc(z)\operatorname{sinc}(z) Sinc function
Integralabf(x)dx\int_{a}^{b} f(x) \, dx Integral
Coscos(z)\cos(z) Cosine
CCC\mathbb{C} Complex numbers
Source code for this entry:
    Formula(Equal(Sinc(Mul(a, z)), Mul(Div(1, a), Integral(Cos(Mul(z, x)), For(x, 0, a))))),
    Variables(a, z),
    Assumptions(And(Element(z, CC), Element(a, CC), NotEqual(a, 0))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC