${\left(T_{n}\!\left(x\right)\right)}^{2} - T_{n - 1}\!\left(x\right) T_{n + 1}\!\left(x\right) > 0$
Assumptions:$n \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; x \in \left(-1, 1\right)$
TeX:
{\left(T_{n}\!\left(x\right)\right)}^{2} - T_{n - 1}\!\left(x\right) T_{n + 1}\!\left(x\right) > 0

n \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; x \in \left(-1, 1\right)
Definitions:
Fungrim symbol Notation Short description
Pow${a}^{b}$ Power
ChebyshevT$T_{n}\!\left(x\right)$ Chebyshev polynomial of the first kind
ZZGreaterEqual$\mathbb{Z}_{\ge n}$ Integers greater than or equal to n
OpenInterval$\left(a, b\right)$ Open interval
Source code for this entry:
Entry(ID("2ada0f"),
Formula(Greater(Sub(Pow(Parentheses(ChebyshevT(n, x)), 2), Mul(ChebyshevT(Sub(n, 1), x), ChebyshevT(Add(n, 1), x))), 0)),
Variables(n, x),
Assumptions(And(Element(n, ZZGreaterEqual(1)), Element(x, OpenInterval(-1, 1)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC