Fungrim home page

Fungrim entry: fb9942

xnn+1πatan ⁣(πlog(n)),  nx_{n} \sim -n + \frac{1}{\pi} \operatorname{atan}\!\left(\frac{\pi}{\log(n)}\right), \; n \to \infty
x_{n} \sim -n + \frac{1}{\pi} \operatorname{atan}\!\left(\frac{\pi}{\log(n)}\right), \; n \to \infty
Fungrim symbol Notation Short description
DigammaFunctionZeroxnx_{n} Zero of the digamma function
Piπ\pi The constant pi (3.14...)
Atanatan(z)\operatorname{atan}(z) Inverse tangent
Loglog(z)\log(z) Natural logarithm
Infinity\infty Positive infinity
Source code for this entry:
    Formula(AsymptoticTo(DigammaFunctionZero(n), Add(Neg(n), Mul(Div(1, Pi), Atan(Div(Pi, Log(n))))), n, Infinity)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC