Fungrim home page

Fungrim entry: 288da1

eγ=limN1log ⁣(pN)n=1Npnpn1{e}^{\gamma} = \lim_{N \to \infty} \frac{1}{\log\!\left(p_{N}\right)} \prod_{n=1}^{N} \frac{p_{n}}{p_{n} - 1}
{e}^{\gamma} = \lim_{N \to \infty} \frac{1}{\log\!\left(p_{N}\right)} \prod_{n=1}^{N} \frac{p_{n}}{p_{n} - 1}
Fungrim symbol Notation Short description
Expez{e}^{z} Exponential function
ConstGammaγ\gamma The constant gamma (0.577...)
SequenceLimitlimnaf(n)\lim_{n \to a} f(n) Limiting value of sequence
Loglog(z)\log(z) Natural logarithm
PrimeNumberpnp_{n} nth prime number
Productnf(n)\prod_{n} f(n) Product
Infinity\infty Positive infinity
Source code for this entry:
    Formula(Equal(Exp(ConstGamma), SequenceLimit(Mul(Div(1, Log(PrimeNumber(N))), Product(Div(PrimeNumber(n), Sub(PrimeNumber(n), 1)), For(n, 1, N))), For(N, Infinity)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC