Fungrim home page

Fungrim entry: dad27b

0π/21sinc2 ⁣(x)dx=πlog(2)\int_{0}^{\pi / 2} \frac{1}{\operatorname{sinc}^{2}\!\left(x\right)} \, dx = \pi \log(2)
\int_{0}^{\pi / 2} \frac{1}{\operatorname{sinc}^{2}\!\left(x\right)} \, dx = \pi \log(2)
Fungrim symbol Notation Short description
Integralabf(x)dx\int_{a}^{b} f(x) \, dx Integral
Powab{a}^{b} Power
Sincsinc(z)\operatorname{sinc}(z) Sinc function
Piπ\pi The constant pi (3.14...)
Loglog(z)\log(z) Natural logarithm
Source code for this entry:
    Formula(Equal(Integral(Div(1, Pow(Sinc(x), 2)), For(x, 0, Div(Pi, 2))), Mul(Pi, Log(2)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC