Fungrim home page

Fungrim entry: 629f70

L ⁣(s,χq.1)=ζ ⁣(s)pq(11ps)L\!\left(s, \chi_{q \, . \, 1}\right) = \zeta\!\left(s\right) \prod_{p \mid q} \left(1 - \frac{1}{{p}^{s}}\right)
Assumptions:qZ1  and  sCq \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; s \in \mathbb{C}
L\!\left(s, \chi_{q \, . \, 1}\right) = \zeta\!\left(s\right) \prod_{p \mid q} \left(1 - \frac{1}{{p}^{s}}\right)

q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; s \in \mathbb{C}
Fungrim symbol Notation Short description
DirichletLL ⁣(s,χ)L\!\left(s, \chi\right) Dirichlet L-function
DirichletCharacterχq.\chi_{q \, . \, \ell} Dirichlet character
RiemannZetaζ ⁣(s)\zeta\!\left(s\right) Riemann zeta function
PrimeProductpf(p)\prod_{p} f(p) Product over primes
Powab{a}^{b} Power
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
CCC\mathbb{C} Complex numbers
Source code for this entry:
    Formula(Equal(DirichletL(s, DirichletCharacter(q, 1)), Mul(RiemannZeta(s), PrimeProduct(Parentheses(Sub(1, Div(1, Pow(p, s)))), For(p), Divides(p, q))))),
    Variables(q, s),
    Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(s, CC))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC