Fungrim home page

Fungrim entry: 2ba423

θ1 ⁣(z,τ)=2eπiτ/4n=0(1)nqn(n+1)sin ⁣((2n+1)πz)   where q=eπiτ\theta_{1}\!\left(z , \tau\right) = 2 {e}^{\pi i \tau / 4} \sum_{n=0}^{\infty} {\left(-1\right)}^{n} {q}^{n \left(n + 1\right)} \sin\!\left(\left(2 n + 1\right) \pi z\right)\; \text{ where } q = {e}^{\pi i \tau}
Assumptions:zC  and  τHz \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}
\theta_{1}\!\left(z , \tau\right) = 2 {e}^{\pi i \tau / 4} \sum_{n=0}^{\infty} {\left(-1\right)}^{n} {q}^{n \left(n + 1\right)} \sin\!\left(\left(2 n + 1\right) \pi z\right)\; \text{ where } q = {e}^{\pi i \tau}

z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}
Fungrim symbol Notation Short description
JacobiThetaθj ⁣(z,τ)\theta_{j}\!\left(z , \tau\right) Jacobi theta function
Expez{e}^{z} Exponential function
Piπ\pi The constant pi (3.14...)
ConstIii Imaginary unit
Sumnf(n)\sum_{n} f(n) Sum
Powab{a}^{b} Power
Sinsin(z)\sin(z) Sine
Infinity\infty Positive infinity
CCC\mathbb{C} Complex numbers
HHH\mathbb{H} Upper complex half-plane
Source code for this entry:
    Formula(Equal(JacobiTheta(1, z, tau), Where(Mul(Mul(2, Exp(Div(Mul(Mul(Pi, ConstI), tau), 4))), Sum(Mul(Mul(Pow(-1, n), Pow(q, Mul(n, Add(n, 1)))), Sin(Mul(Mul(Add(Mul(2, n), 1), Pi), z))), For(n, 0, Infinity))), Equal(q, Exp(Mul(Mul(Pi, ConstI), tau)))))),
    Variables(z, tau),
    Assumptions(And(Element(z, CC), Element(tau, HH))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC