Fungrim home page

Fungrim entry: e50532

W ⁣(z)=n=0μnvn   where v=2(ez+1)W\!\left(z\right) = \sum_{n=0}^{\infty} \mu_{n} {v}^{n}\; \text{ where } v = \sqrt{2 \left(e z + 1\right)}
Assumptions:zC  and  ez+1<1z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left|e z + 1\right| < 1
W\!\left(z\right) = \sum_{n=0}^{\infty} \mu_{n} {v}^{n}\; \text{ where } v = \sqrt{2 \left(e z + 1\right)}

z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left|e z + 1\right| < 1
Fungrim symbol Notation Short description
LambertWW ⁣(z)W\!\left(z\right) Lambert W-function
Sumnf(n)\sum_{n} f(n) Sum
LambertWPuiseuxCoefficientμk\mu_{k} Coefficient in scaled Puiseux expansion of Lambert W-function
Powab{a}^{b} Power
Infinity\infty Positive infinity
Sqrtz\sqrt{z} Principal square root
ConstEee The constant e (2.718...)
CCC\mathbb{C} Complex numbers
Absz\left|z\right| Absolute value
Source code for this entry:
    Formula(Where(Equal(LambertW(z), Sum(Mul(LambertWPuiseuxCoefficient(n), Pow(v, n)), For(n, 0, Infinity))), Equal(v, Sqrt(Mul(2, Add(Mul(ConstE, z), 1)))))),
    Assumptions(And(Element(z, CC), Less(Abs(Add(Mul(ConstE, z), 1)), 1))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC