Fungrim home page

Lambert W-function

Table of contents: Definition - Illustrations - Transcendental equations - Specific values - Symmetry - Analytic properties - Derivatives and integrals - Series expansions - Range - Bounds and inequalities

Definition

6da738
Symbol: LambertW W ⁣(z)W\!\left(z\right) Lambert W-function

Illustrations

cb0a9b
Image: X-ray of W ⁣(z)W\!\left(z\right) on z[3,3]+[3,3]iz \in \left[-3, 3\right] + \left[-3, 3\right] i

Transcendental equations

88168b
Wk ⁣(z)exp ⁣(Wk ⁣(z))=zW_{k}\!\left(z\right) \exp\!\left(W_{k}\!\left(z\right)\right) = z
d7136f
solutionswC[wew=z]={Wk ⁣(z):kZ  and  (z0  or  k=0)}\mathop{\operatorname{solutions}\,}\limits_{w \in \mathbb{C}} \left[w {e}^{w} = z\right] = \left\{ W_{k}\!\left(z\right) : k \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; \left(z \ne 0 \;\mathbin{\operatorname{or}}\; k = 0\right) \right\}
314807
solution*w[1,)[wew=x]=W ⁣(x)\mathop{\operatorname{solution*}\,}\limits_{w \in \left[-1, \infty\right)} \left[w {e}^{w} = x\right] = W\!\left(x\right)
636929
solution*w(,1][wew=x]=W1 ⁣(x)\mathop{\operatorname{solution*}\,}\limits_{w \in \left(-\infty, -1\right]} \left[w {e}^{w} = x\right] = W_{-1}\!\left(x\right)
8654a3
W ⁣(xex)=xW\!\left(x {e}^{x}\right) = x
ed7dac
W1 ⁣(xex)=xW_{-1}\!\left(x {e}^{x}\right) = x
30bd5b
W ⁣(xlog(x))=log(x)W\!\left(x \log(x)\right) = \log(x)
a172c7
W1 ⁣(xlog(x))=log(x)W_{-1}\!\left(x \log(x)\right) = \log(x)

Specific values

0be17d
W ⁣(0)=0W\!\left(0\right) = 0
c95c4f
W ⁣(e)=1W\!\left(e\right) = 1
b93d09
W ⁣(1e)=1W\!\left(-\frac{1}{e}\right) = -1
d09380
W1 ⁣(1e)=1W_{-1}\!\left(-\frac{1}{e}\right) = -1
5d4cce
W ⁣(1)[0.56714329040978387299996866221035554975381578718651±2.511051]W\!\left(1\right) \in \left[0.56714329040978387299996866221035554975381578718651 \pm 2.51 \cdot 10^{-51}\right]
c87ff4
W0 ⁣(0)=1W'_{0}\!\left(0\right) = 1
8e8a59
W0(r) ⁣(0)=(r)r1W^{(r)}_{0}\!\left(0\right) = {\left(-r\right)}^{r - 1}
f372e9
Wk ⁣(0)=W_{k}\!\left(0\right) = -\infty
e1dd64
W ⁣(π2)=iπ2W\!\left(-\frac{\pi}{2}\right) = \frac{i \pi}{2}

Symmetry

6d936e
Wk ⁣(z)=Wk ⁣(z)W_{k}\!\left(\overline{z}\right) = \overline{W_{-k}\!\left(z\right)}

Analytic properties

0d3b91
W ⁣(z) is holomorphic on zC(,e1]W\!\left(z\right) \text{ is holomorphic on } z \in \mathbb{C} \setminus \left(-\infty, -{e}^{-1}\right]
2caf78
Wk ⁣(z) is holomorphic on zC(,0]W_{k}\!\left(z\right) \text{ is holomorphic on } z \in \mathbb{C} \setminus \left(-\infty, 0\right]
aca420
poleszC{~}Wk ⁣(z)={}\mathop{\operatorname{poles}\,}\limits_{z \in \mathbb{C} \cup \left\{{\tilde \infty}\right\}} W_{k}\!\left(z\right) = \left\{\right\}
41ece5
BranchPoints ⁣(W0 ⁣(z),z,C{~})={e1,~}\operatorname{BranchPoints}\!\left(W_{0}\!\left(z\right), z, \mathbb{C} \cup \left\{{\tilde \infty}\right\}\right) = \left\{-{e}^{-1}, {\tilde \infty}\right\}
17eaad
BranchPoints ⁣(Wk ⁣(z),z,C{~})={0,e1,~}\operatorname{BranchPoints}\!\left(W_{k}\!\left(z\right), z, \mathbb{C} \cup \left\{{\tilde \infty}\right\}\right) = \left\{0, -{e}^{-1}, {\tilde \infty}\right\}
e6e7a2
BranchPoints ⁣(Wk ⁣(z),z,C{~})={0,~}\operatorname{BranchPoints}\!\left(W_{k}\!\left(z\right), z, \mathbb{C} \cup \left\{{\tilde \infty}\right\}\right) = \left\{0, {\tilde \infty}\right\}
fdfb16
BranchCuts ⁣(W0 ⁣(z),z,C)={(,e1]}\operatorname{BranchCuts}\!\left(W_{0}\!\left(z\right), z, \mathbb{C}\right) = \left\{\left(-\infty, -{e}^{-1}\right]\right\}
276d78
BranchCuts ⁣(Wk ⁣(z),z,C)={(,e1],[e1,0],(,0]}\operatorname{BranchCuts}\!\left(W_{k}\!\left(z\right), z, \mathbb{C}\right) = \left\{\left(-\infty, -{e}^{-1}\right], \left[-{e}^{-1}, 0\right], \left(-\infty, 0\right]\right\}
6191cd
BranchCuts ⁣(Wk ⁣(z),z,C)={(,0]}\operatorname{BranchCuts}\!\left(W_{k}\!\left(z\right), z, \mathbb{C}\right) = \left\{\left(-\infty, 0\right]\right\}
f0f17c
zeroszCW0 ⁣(z)={0}\mathop{\operatorname{zeros}\,}\limits_{z \in \mathbb{C}} W_{0}\!\left(z\right) = \left\{0\right\}
766302
zeroszCWk ⁣(z)={}\mathop{\operatorname{zeros}\,}\limits_{z \in \mathbb{C}} W_{k}\!\left(z\right) = \left\{\right\}

Derivatives and integrals

8d486c
Wk ⁣(z)=1(1+Wk ⁣(z))exp ⁣(Wk ⁣(z))W'_{k}\!\left(z\right) = \frac{1}{\left(1 + W_{k}\!\left(z\right)\right) \exp\!\left(W_{k}\!\left(z\right)\right)}
72b6ca
Wk ⁣(z)=Wk ⁣(z)z(1+Wk ⁣(z))W'_{k}\!\left(z\right) = \frac{W_{k}\!\left(z\right)}{z \left(1 + W_{k}\!\left(z\right)\right)}

Series expansions

Taylor series

58c19a
W ⁣(z)=n=1(n)n1n!znW\!\left(z\right) = \sum_{n=1}^{\infty} \frac{{\left(-n\right)}^{n - 1}}{n !} {z}^{n}

Puiseux series

c5a8c2
Symbol: LambertWPuiseuxCoefficient μk\mu_{k} Coefficient in scaled Puiseux expansion of Lambert W-function
0983d1
Table of μk\mu_{k} for 0k150 \le k \le 15
d37d0f
μk=k1k+1(μk22+αk24)αk2μk1k+1   where αk={2,k=01,k=1j=2k1μjμk+1j,otherwise\mu_{k} = \frac{k - 1}{k + 1} \left(\frac{\mu_{k - 2}}{2} + \frac{\alpha_{k - 2}}{4}\right) - \frac{\alpha_{k}}{2} - \frac{\mu_{k - 1}}{k + 1}\; \text{ where } \alpha_{k} = \begin{cases} 2, & k = 0\\-1, & k = 1\\\sum_{j=2}^{k - 1} \mu_{j} \mu_{k + 1 - j}, & \text{otherwise}\\ \end{cases}
adf83a
μk<2(45)k\left|\mu_{k}\right| < 2 {\left(\frac{4}{5}\right)}^{k}
e50532
W ⁣(z)=n=0μnvn   where v=2(ez+1)W\!\left(z\right) = \sum_{n=0}^{\infty} \mu_{n} {v}^{n}\; \text{ where } v = \sqrt{2 \left(e z + 1\right)}
99ff4c
Wk ⁣(z)=n=0μnvn   where v=2(ez+1)W_{k}\!\left(z\right) = \sum_{n=0}^{\infty} \mu_{n} {v}^{n}\; \text{ where } v = -\sqrt{2 \left(e z + 1\right)}

Logarithmic expansion

1fc63b
Wk ⁣(z)=L1L2+n=0m=1(1)nm![n+mn+1]σnτm   where L1=log(z)+2πik,  L2=log(L1),  σ=1L1,  τ=L2L1W_{k}\!\left(z\right) = \operatorname{L_1} - \operatorname{L_2} + \sum_{n=0}^{\infty} \sum_{m=1}^{\infty} \frac{{\left(-1\right)}^{n}}{m !} \left[{n + m \atop n + 1}\right] {\sigma}^{n} {\tau}^{m}\; \text{ where } \operatorname{L_1} = \log(z) + 2 \pi i k,\;\operatorname{L_2} = \log(\operatorname{L_1}),\;\sigma = \frac{1}{\operatorname{L_1}},\;\tau = \frac{\operatorname{L_2}}{\operatorname{L_1}}
da0f15
Wk ⁣(z)(L1L2+n=0N1m=1M1(1)nm![n+mn+1]σnτm)4τ(4σ)N+(4τ)M(14σ)(14τ)   where L1=log(z)+2πik,  L2=log(L1),  σ=1L1,  τ=L2L1\left|W_{k}\!\left(z\right) - \left(\operatorname{L_1} - \operatorname{L_2} + \sum_{n=0}^{N - 1} \sum_{m=1}^{M - 1} \frac{{\left(-1\right)}^{n}}{m !} \left[{n + m \atop n + 1}\right] {\sigma}^{n} {\tau}^{m}\right)\right| \le \frac{4 \left|\tau\right| {\left(4 \left|\sigma\right|\right)}^{N} + {\left(4 \left|\tau\right|\right)}^{M}}{\left(1 - 4 \left|\sigma\right|\right) \left(1 - 4 \left|\tau\right|\right)}\; \text{ where } \operatorname{L_1} = \log(z) + 2 \pi i k,\;\operatorname{L_2} = \log(\operatorname{L_1}),\;\sigma = \frac{1}{\operatorname{L_1}},\;\tau = \frac{\operatorname{L_2}}{\operatorname{L_1}}

Range

Tiling of the plane

c0ae5b
{Wk ⁣(z):kZ  and  zC  and  (z0  or  k=0)}=C\left\{ W_{k}\!\left(z\right) : k \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left(z \ne 0 \;\mathbin{\operatorname{or}}\; k = 0\right) \right\} = \mathbb{C}
6e05c9
Wk1 ⁣(z1)Wk2 ⁣(z2)W_{{k}_{1}}\!\left({z}_{1}\right) \ne W_{{k}_{2}}\!\left({z}_{2}\right)

Image of the principal branch

ee86fb
{W ⁣(x):x(e1,)}=(1,)\left\{ W\!\left(x\right) : x \in \left(-{e}^{-1}, \infty\right) \right\} = \left(-1, \infty\right)
55498b
{W ⁣(x):x{e1}}={1}\left\{ W\!\left(x\right) : x \in \left\{-{e}^{-1}\right\} \right\} = \left\{-1\right\}
44ad09
{W ⁣(x):x(,e1)}={ycot(y)+yi:y(0,π)}\left\{ W\!\left(x\right) : x \in \left(-\infty, -{e}^{-1}\right) \right\} = \left\{ -y \cot(y) + y i : y \in \left(0, \pi\right) \right\}
2d3356
{W ⁣(z):zCR}={x+yi:y(π,π){0}  and  x(ycot(y),)}\left\{ W\!\left(z\right) : z \in \mathbb{C} \setminus \mathbb{R} \right\} = \left\{ x + y i : y \in \left(-\pi, \pi\right) \setminus \left\{0\right\} \;\mathbin{\operatorname{and}}\; x \in \left(-y \cot(y), \infty\right) \right\}

Image of the non-principal branches

21d9a0
{W1 ⁣(z):zC{0}}=(,1]{x+yi:xR  and  yR  and  ((0<u<2  and  tv)  or  (1u2)  or  (1<u<3  and  t>v))   where t=xsinc(y),  v=cos(y),  u=yπ}\left\{ W_{-1}\!\left(z\right) : z \in \mathbb{C} \setminus \left\{0\right\} \right\} = \left(-\infty, -1\right] \cup \left\{ x + y i : x \in \mathbb{R} \;\mathbin{\operatorname{and}}\; y \in \mathbb{R} \;\mathbin{\operatorname{and}}\; \left(\left(0 < u < 2 \;\mathbin{\operatorname{and}}\; t \le v\right) \;\mathbin{\operatorname{or}}\; \left(1 \le u \le 2\right) \;\mathbin{\operatorname{or}}\; \left(1 < u < 3 \;\mathbin{\operatorname{and}}\; t > v\right)\right)\; \text{ where } t = x \operatorname{sinc}(y),\;v = -\cos(y),\;u = -\frac{y}{\pi} \right\}
d5917b
{Wk ⁣(z):zC{0}}={x+yi:xR  and  yR  and  ((2k2<u<2k  and  t<v)  or  (2k1u2k)  or  (2k1<u<2k+1  and  tv))   where t=xsinc(y),  v=cos(y),  u=yπ}\left\{ W_{k}\!\left(z\right) : z \in \mathbb{C} \setminus \left\{0\right\} \right\} = \left\{ x + y i : x \in \mathbb{R} \;\mathbin{\operatorname{and}}\; y \in \mathbb{R} \;\mathbin{\operatorname{and}}\; \left(\left(2 k - 2 < u < 2 k \;\mathbin{\operatorname{and}}\; t < v\right) \;\mathbin{\operatorname{or}}\; \left(2 k - 1 \le u \le 2 k\right) \;\mathbin{\operatorname{or}}\; \left(2 k - 1 < u < 2 k + 1 \;\mathbin{\operatorname{and}}\; t \ge v\right)\right)\; \text{ where } t = x \operatorname{sinc}(y),\;v = -\cos(y),\;u = \frac{y}{\pi} \right\}
bf3e29
{Wk ⁣(z):zC{0}}={x+yi:xR  and  yR  and  ((2k2<u<2k  and  tv)  or  (2k1u2k)  or  (2k1<u<2k+1  and  t>v))   where t=xsinc(y),  v=cos(y),  u=yπ}\left\{ W_{-k}\!\left(z\right) : z \in \mathbb{C} \setminus \left\{0\right\} \right\} = \left\{ x + y i : x \in \mathbb{R} \;\mathbin{\operatorname{and}}\; y \in \mathbb{R} \;\mathbin{\operatorname{and}}\; \left(\left(2 k - 2 < u < 2 k \;\mathbin{\operatorname{and}}\; t \le v\right) \;\mathbin{\operatorname{or}}\; \left(2 k - 1 \le u \le 2 k\right) \;\mathbin{\operatorname{or}}\; \left(2 k - 1 < u < 2 k + 1 \;\mathbin{\operatorname{and}}\; t > v\right)\right)\; \text{ where } t = x \operatorname{sinc}(y),\;v = -\cos(y),\;u = -\frac{y}{\pi} \right\}

Bounds and inequalities

Complex parts

4257f4
Im ⁣(W ⁣(z))<π\left|\operatorname{Im}\!\left(W\!\left(z\right)\right)\right| < \pi
82926c
Im ⁣(W1 ⁣(z))(0,3π)\operatorname{Im}\!\left(W_{1}\!\left(z\right)\right) \in \left(0, 3 \pi\right)
e5bba3
Im ⁣(W1 ⁣(z))(3π,0]\operatorname{Im}\!\left(W_{-1}\!\left(z\right)\right) \in \left(-3 \pi, 0\right]
a68e0e
sgn(k)Im ⁣(Wk ⁣(z))((2k2)π,(2k+1)π)\operatorname{sgn}(k) \operatorname{Im}\!\left(W_{k}\!\left(z\right)\right) \in \left(\left(2 \left|k\right| - 2\right) \pi, \left(2 \left|k\right| + 1\right) \pi\right)

Derivative bounds

f171a6
W0 ⁣(x)1x+1W'_{0}\!\left(x\right) \le \frac{1}{x + 1}
a34260
W0 ⁣(x)<21+exW'_{0}\!\left(x\right) < \frac{2}{\sqrt{1 + e x}}
9be916
W1 ⁣(x)<21+ex+2x\left|W'_{-1}\!\left(x\right)\right| < \frac{2}{\sqrt{1 + e x}} + \frac{2}{\left|x\right|}
b3d435
Wk ⁣(z)1.2z\left|W'_{k}\!\left(z\right)\right| \le \left|\frac{1.2}{z}\right|
8e06be
Wk ⁣(z)1.5z\left|W'_{k}\!\left(z\right)\right| \le \left|\frac{1.5}{z}\right|
72712c
Wk ⁣(z)1z\left|W'_{k}\!\left(z\right)\right| \le \frac{1}{\left|z\right|}
9136b9
Wk ⁣(z)1zmax ⁣(3,1.5ez+1)\left|W'_{k}\!\left(z\right)\right| \le \left|\frac{1}{z}\right| \max\!\left(3, \left|\frac{1.5}{\sqrt{\left|e z + 1\right|}}\right|\right)
0eb699
W0 ⁣(z)2.25t(1+t)   where t=ez+1\left|W'_{0}\!\left(z\right)\right| \le \left|\frac{2.25}{\sqrt{t \left(1 + t\right)}}\right|\; \text{ where } t = \left|e z + 1\right|
214b1c
Wk ⁣(z)1z(1+14+z2)\left|W'_{k}\!\left(z\right)\right| \le \left|\frac{1}{\left|z\right|} \left(1 + \frac{1}{4 + {\left|z\right|}^{2}}\right)\right|
a1e634
Wk ⁣(z)1z(1+23321ez+1)\left|W'_{k}\!\left(z\right)\right| \le \left|\frac{1}{\left|z\right|} \left(1 + \frac{23}{32} \frac{1}{\sqrt{\left|e z + 1\right|}}\right)\right|

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC