Fungrim home page

Fungrim entry: cc6d21

θ2 ⁣(z+12τ,τ)=eπi(z+τ/4)θ3 ⁣(z,τ)\theta_{2}\!\left(z + \frac{1}{2} \tau , \tau\right) = {e}^{-\pi i \left(z + \tau / 4\right)} \theta_{3}\!\left(z , \tau\right)
Assumptions:zC  and  τHz \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}
\theta_{2}\!\left(z + \frac{1}{2} \tau , \tau\right) = {e}^{-\pi i \left(z + \tau / 4\right)} \theta_{3}\!\left(z , \tau\right)

z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}
Fungrim symbol Notation Short description
JacobiThetaθj ⁣(z,τ)\theta_{j}\!\left(z , \tau\right) Jacobi theta function
Expez{e}^{z} Exponential function
Piπ\pi The constant pi (3.14...)
ConstIii Imaginary unit
CCC\mathbb{C} Complex numbers
HHH\mathbb{H} Upper complex half-plane
Source code for this entry:
    Formula(Equal(JacobiTheta(2, Add(z, Mul(Div(1, 2), tau)), tau), Mul(Exp(Neg(Mul(Mul(Pi, ConstI), Add(z, Div(tau, 4))))), JacobiTheta(3, z, tau)))),
    Variables(z, tau),
    Assumptions(And(Element(z, CC), Element(tau, HH))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC