Fungrim home page

Fungrim entry: f617c0

π=4n=0(1)n2n+1\pi = 4 \sum_{n=0}^{\infty} \frac{{\left(-1\right)}^{n}}{2 n + 1}
\pi = 4 \sum_{n=0}^{\infty} \frac{{\left(-1\right)}^{n}}{2 n + 1}
Fungrim symbol Notation Short description
Piπ\pi The constant pi (3.14...)
Sumnf(n)\sum_{n} f(n) Sum
Powab{a}^{b} Power
Infinity\infty Positive infinity
Source code for this entry:
    Formula(Equal(Pi, Mul(4, Sum(Div(Pow(-1, n), Add(Mul(2, n), 1)), For(n, 0, Infinity))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC