Fungrim home page

Fungrim entry: 088fdb

sinc ⁣(i)=limxsinc ⁣(ix)=\operatorname{sinc}\!\left(-i \infty\right) = \lim_{x \to -\infty} \operatorname{sinc}\!\left(i x\right) = \infty
\operatorname{sinc}\!\left(-i \infty\right) = \lim_{x \to -\infty} \operatorname{sinc}\!\left(i x\right) = \infty
Fungrim symbol Notation Short description
Sincsinc(z)\operatorname{sinc}(z) Sinc function
ConstIii Imaginary unit
Infinity\infty Positive infinity
RealLimitlimxaf(x)\lim_{x \to a} f(x) Limiting value, real variable
Source code for this entry:
    Formula(Equal(Sinc(Neg(Mul(ConstI, Infinity))), RealLimit(Sinc(Mul(ConstI, x)), For(x, Neg(Infinity))), Infinity)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC