Fungrim home page

Fungrim entry: 40baa9

Eρ={ρeiθ+ρ1eiθ2:θ[0,2π)}\mathcal{E}_{\rho} = \left\{ \frac{\rho {e}^{i \theta} + {\rho}^{-1} {e}^{-i \theta}}{2} : \theta \in \left[0, 2 \pi\right) \right\}
Assumptions:ρR  and  ρ>1\rho \in \mathbb{R} \;\mathbin{\operatorname{and}}\; \rho > 1
\mathcal{E}_{\rho} = \left\{ \frac{\rho {e}^{i \theta} + {\rho}^{-1} {e}^{-i \theta}}{2} : \theta \in \left[0, 2 \pi\right) \right\}

\rho \in \mathbb{R} \;\mathbin{\operatorname{and}}\; \rho > 1
Fungrim symbol Notation Short description
BernsteinEllipseEρ\mathcal{E}_{\rho} Bernstein ellipse with foci -1,+1 and semi-axis sum rho
Expez{e}^{z} Exponential function
ConstIii Imaginary unit
Powab{a}^{b} Power
ClosedOpenInterval[a,b)\left[a, b\right) Closed-open interval
Piπ\pi The constant pi (3.14...)
RRR\mathbb{R} Real numbers
Source code for this entry:
    Formula(Equal(BernsteinEllipse(rho), Set(Div(Add(Mul(rho, Exp(Mul(ConstI, theta))), Mul(Pow(rho, -1), Exp(Neg(Mul(ConstI, theta))))), 2), ForElement(theta, ClosedOpenInterval(0, Mul(2, Pi)))))),
    Assumptions(And(Element(rho, RR), Greater(rho, 1))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC