Fungrim home page

Fungrim entry: 3102a7

G4 ⁣(e2πi/3)=E4 ⁣(e2πi/3)=0G_{4}\!\left({e}^{2 \pi i / 3}\right) = E_{4}\!\left({e}^{2 \pi i / 3}\right) = 0
G_{4}\!\left({e}^{2 \pi i / 3}\right) = E_{4}\!\left({e}^{2 \pi i / 3}\right) = 0
Fungrim symbol Notation Short description
EisensteinGGk ⁣(τ)G_{k}\!\left(\tau\right) Eisenstein series
Expez{e}^{z} Exponential function
Piπ\pi The constant pi (3.14...)
ConstIii Imaginary unit
EisensteinEEk ⁣(τ)E_{k}\!\left(\tau\right) Normalized Eisenstein series
Source code for this entry:
    Formula(Equal(EisensteinG(4, Exp(Div(Mul(Mul(2, Pi), ConstI), 3))), EisensteinE(4, Exp(Div(Mul(Mul(2, Pi), ConstI), 3))), 0)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC