Fungrim home page

Fungrim entry: 1e47db

k=1nψ ⁣(k)=n(ψ ⁣(n+1)1)\sum_{k=1}^{n} \psi\!\left(k\right) = n \left(\psi\!\left(n + 1\right) - 1\right)
Assumptions:nZ1n \in \mathbb{Z}_{\ge 1}
\sum_{k=1}^{n} \psi\!\left(k\right) = n \left(\psi\!\left(n + 1\right) - 1\right)

n \in \mathbb{Z}_{\ge 1}
Fungrim symbol Notation Short description
Sumnf(n)\sum_{n} f(n) Sum
DigammaFunctionψ ⁣(z)\psi\!\left(z\right) Digamma function
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Source code for this entry:
    Formula(Equal(Sum(DigammaFunction(k), For(k, 1, n)), Mul(n, Sub(DigammaFunction(Add(n, 1)), 1)))),
    Assumptions(Element(n, ZZGreaterEqual(1))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC