Fungrim home page

Fungrim entry: dce62c

limx0+ψ ⁣(x)=(1)m+1\lim_{x \to {0}^{+}} \psi\!\left(x\right) = {\left(-1\right)}^{m + 1} \infty
Assumptions:mZ0m \in \mathbb{Z}_{\ge 0}
\lim_{x \to {0}^{+}} \psi\!\left(x\right) = {\left(-1\right)}^{m + 1} \infty

m \in \mathbb{Z}_{\ge 0}
Fungrim symbol Notation Short description
RightLimitlimxa+f(x)\lim_{x \to {a}^{+}} f(x) Limiting value, from the right
DigammaFunctionψ ⁣(z)\psi\!\left(z\right) Digamma function
Powab{a}^{b} Power
Infinity\infty Positive infinity
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Source code for this entry:
    Formula(Equal(RightLimit(DigammaFunction(x), For(x, 0)), Mul(Pow(-1, Add(m, 1)), Infinity))),
    Assumptions(Element(m, ZZGreaterEqual(0))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC