Fungrim home page

Fungrim entry: ad1eaf

zeroszCθ2 ⁣(z,τ)={(m+12)+nτ:mZ  and  nZ}\mathop{\operatorname{zeros}\,}\limits_{z \in \mathbb{C}} \theta_{2}\!\left(z , \tau\right) = \left\{ \left(m + \frac{1}{2}\right) + n \tau : m \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z} \right\}
Assumptions:τH\tau \in \mathbb{H}
\mathop{\operatorname{zeros}\,}\limits_{z \in \mathbb{C}} \theta_{2}\!\left(z , \tau\right) = \left\{ \left(m + \frac{1}{2}\right) + n \tau : m \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z} \right\}

\tau \in \mathbb{H}
Fungrim symbol Notation Short description
ZeroszerosxSf(x)\mathop{\operatorname{zeros}\,}\limits_{x \in S} f(x) Zeros (roots) of function
JacobiThetaθj ⁣(z,τ)\theta_{j}\!\left(z , \tau\right) Jacobi theta function
CCC\mathbb{C} Complex numbers
ZZZ\mathbb{Z} Integers
HHH\mathbb{H} Upper complex half-plane
Source code for this entry:
    Formula(Equal(Zeros(JacobiTheta(2, z, tau), ForElement(z, CC)), Set(Add(Parentheses(Add(m, Div(1, 2))), Mul(n, tau)), For(Tuple(m, n)), And(Element(m, ZZ), Element(n, ZZ))))),
    Assumptions(Element(tau, HH)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC