Fungrim home page

Fungrim entry: 7a85b7

Pn ⁣(z)=12nk=0n/2(1)k(nk)(2n2kn)zn2kP_{n}\!\left(z\right) = \frac{1}{{2}^{n}} \sum_{k=0}^{\left\lfloor n / 2 \right\rfloor} {\left(-1\right)}^{k} {n \choose k} {2 n - 2 k \choose n} {z}^{n - 2 k}
Assumptions:nZ0  and  zCn \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}
P_{n}\!\left(z\right) = \frac{1}{{2}^{n}} \sum_{k=0}^{\left\lfloor n / 2 \right\rfloor} {\left(-1\right)}^{k} {n \choose k} {2 n - 2 k \choose n} {z}^{n - 2 k}

n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}
Fungrim symbol Notation Short description
LegendrePolynomialPn ⁣(z)P_{n}\!\left(z\right) Legendre polynomial
Powab{a}^{b} Power
Sumnf(n)\sum_{n} f(n) Sum
Binomial(nk){n \choose k} Binomial coefficient
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
CCC\mathbb{C} Complex numbers
Source code for this entry:
    Formula(Equal(LegendrePolynomial(n, z), Mul(Div(1, Pow(2, n)), Sum(Mul(Mul(Mul(Pow(-1, k), Binomial(n, k)), Binomial(Sub(Mul(2, n), Mul(2, k)), n)), Pow(z, Sub(n, Mul(2, k)))), For(k, 0, Floor(Div(n, 2))))))),
    Variables(n, z),
    Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(z, CC))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC