Fungrim home page

Fungrim entry: e00d9e

π=30(θ3 ⁣(0,it)1)dt\pi = 3 \int_{0}^{\infty} \left(\theta_{3}\!\left(0 , i t\right) - 1\right) \, dt
\pi = 3 \int_{0}^{\infty} \left(\theta_{3}\!\left(0 , i t\right) - 1\right) \, dt
Fungrim symbol Notation Short description
Piπ\pi The constant pi (3.14...)
Integralabf(x)dx\int_{a}^{b} f(x) \, dx Integral
JacobiThetaθj ⁣(z,τ)\theta_{j}\!\left(z , \tau\right) Jacobi theta function
ConstIii Imaginary unit
Infinity\infty Positive infinity
Source code for this entry:
    Formula(Equal(Pi, Mul(3, Integral(Parentheses(Sub(JacobiTheta(3, 0, Mul(ConstI, t)), 1)), For(t, 0, Infinity))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC