Fungrim home page

Fungrim entry: f88596

limNq=1N#Gq12N2=6π2\lim_{N \to \infty} \frac{\sum_{q=1}^{N} \# G_{q}}{\frac{1}{2} {N}^{2}} = \frac{6}{{\pi}^{2}}
\lim_{N \to \infty} \frac{\sum_{q=1}^{N} \# G_{q}}{\frac{1}{2} {N}^{2}} = \frac{6}{{\pi}^{2}}
Fungrim symbol Notation Short description
SequenceLimitlimnaf(n)\lim_{n \to a} f(n) Limiting value of sequence
Sumnf(n)\sum_{n} f(n) Sum
Cardinality#S\# S Set cardinality
DirichletGroupGqG_{q} Dirichlet characters with given modulus
Powab{a}^{b} Power
Infinity\infty Positive infinity
Piπ\pi The constant pi (3.14...)
Source code for this entry:
    Formula(Equal(SequenceLimit(Div(Sum(Cardinality(DirichletGroup(q)), For(q, 1, N)), Mul(Div(1, 2), Pow(N, 2))), For(N, Infinity)), Div(6, Pow(Pi, 2)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC