Fungrim home page

Fungrim entry: bf747b

limτiθ4 ⁣(z,τ)=1\lim_{\tau \to i \infty} \theta_{4}\!\left(z , \tau\right) = 1
Assumptions:zCz \in \mathbb{C}
\lim_{\tau \to i \infty} \theta_{4}\!\left(z , \tau\right) = 1

z \in \mathbb{C}
Fungrim symbol Notation Short description
ComplexLimitlimzaf(z)\lim_{z \to a} f(z) Limiting value, complex variable
JacobiThetaθj ⁣(z,τ)\theta_{j}\!\left(z , \tau\right) Jacobi theta function
ConstIii Imaginary unit
Infinity\infty Positive infinity
CCC\mathbb{C} Complex numbers
Source code for this entry:
    Formula(Equal(ComplexLimit(JacobiTheta(4, z, tau), For(tau, Mul(ConstI, Infinity))), 1)),
    Assumptions(Element(z, CC)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC