Fungrim home page

Fungrim entry: ff190c

(B2n+(p1)2n1p)Z\left(B_{2 n} + \sum_{\left(p - 1\right) \mid 2 n} \frac{1}{p}\right) \in \mathbb{Z}
Assumptions:nZ1n \in \mathbb{Z}_{\ge 1}
\left(B_{2 n} + \sum_{\left(p - 1\right) \mid 2 n} \frac{1}{p}\right) \in \mathbb{Z}

n \in \mathbb{Z}_{\ge 1}
Fungrim symbol Notation Short description
BernoulliBBnB_{n} Bernoulli number
PrimeSumpf(p)\sum_{p} f(p) Sum over primes
ZZZ\mathbb{Z} Integers
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Source code for this entry:
    Formula(Element(Parentheses(Add(BernoulliB(Mul(2, n)), PrimeSum(Div(1, p), For(p), Divides(Parentheses(Sub(p, 1)), Mul(2, n))))), ZZ)),
    Assumptions(Element(n, ZZGreaterEqual(1))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC