# Fungrim entry: f07e9d

$R_D\!\left(0, 0, z\right) = \begin{cases} \operatorname{sgn}\!\left(\frac{1}{{z}^{3 / 2}}\right) \infty, & z \ne 0\\{\tilde \infty}, & \text{otherwise}\\ \end{cases}$
Assumptions:$z \in \mathbb{C}$
TeX:
R_D\!\left(0, 0, z\right) = \begin{cases} \operatorname{sgn}\!\left(\frac{1}{{z}^{3 / 2}}\right) \infty, & z \ne 0\\{\tilde \infty}, & \text{otherwise}\\ \end{cases}

z \in \mathbb{C}
Definitions:
Fungrim symbol Notation Short description
CarlsonRD$R_D\!\left(x, y, z\right)$ Degenerate Carlson symmetric elliptic integral of the third kind
Sign$\operatorname{sgn}(z)$ Sign function
Pow${a}^{b}$ Power
Infinity$\infty$ Positive infinity
UnsignedInfinity${\tilde \infty}$ Unsigned infinity
CC$\mathbb{C}$ Complex numbers
Source code for this entry:
Entry(ID("f07e9d"),
Formula(Equal(CarlsonRD(0, 0, z), Cases(Tuple(Mul(Sign(Div(1, Pow(z, Div(3, 2)))), Infinity), NotEqual(z, 0)), Tuple(UnsignedInfinity, Otherwise)))),
Variables(z),
Assumptions(Element(z, CC)))

## Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC