Fungrim home page

Fungrim entry: f07e9d

RD ⁣(0,0,z)={sgn ⁣(1z3/2),z0~,otherwiseR_D\!\left(0, 0, z\right) = \begin{cases} \operatorname{sgn}\!\left(\frac{1}{{z}^{3 / 2}}\right) \infty, & z \ne 0\\{\tilde \infty}, & \text{otherwise}\\ \end{cases}
Assumptions:zCz \in \mathbb{C}
R_D\!\left(0, 0, z\right) = \begin{cases} \operatorname{sgn}\!\left(\frac{1}{{z}^{3 / 2}}\right) \infty, & z \ne 0\\{\tilde \infty}, & \text{otherwise}\\ \end{cases}

z \in \mathbb{C}
Fungrim symbol Notation Short description
CarlsonRDRD ⁣(x,y,z)R_D\!\left(x, y, z\right) Degenerate Carlson symmetric elliptic integral of the third kind
Signsgn(z)\operatorname{sgn}(z) Sign function
Powab{a}^{b} Power
Infinity\infty Positive infinity
UnsignedInfinity~{\tilde \infty} Unsigned infinity
CCC\mathbb{C} Complex numbers
Source code for this entry:
    Formula(Equal(CarlsonRD(0, 0, z), Cases(Tuple(Mul(Sign(Div(1, Pow(z, Div(3, 2)))), Infinity), NotEqual(z, 0)), Tuple(UnsignedInfinity, Otherwise)))),
    Assumptions(Element(z, CC)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC