Fungrim home page

Fungrim entry: ad04bd

arg minxR[sin(x)]={π(2n12):nZ}\mathop{\operatorname{arg\,min}}\limits_{x \in \mathbb{R}} \left[\sin(x)\right] = \left\{ \pi \left(2 n - \frac{1}{2}\right) : n \in \mathbb{Z} \right\}
\mathop{\operatorname{arg\,min}}\limits_{x \in \mathbb{R}} \left[\sin(x)\right] = \left\{ \pi \left(2 n - \frac{1}{2}\right) : n \in \mathbb{Z} \right\}
Fungrim symbol Notation Short description
ArgMinarg minxSf(x)\mathop{\operatorname{arg\,min}}\limits_{x \in S} f(x) Locations of minimum value
Sinsin(z)\sin(z) Sine
RRR\mathbb{R} Real numbers
Piπ\pi The constant pi (3.14...)
ZZZ\mathbb{Z} Integers
Source code for this entry:
    Formula(Equal(ArgMin(Brackets(Sin(x)), ForElement(x, RR)), Set(Mul(Pi, Sub(Mul(2, n), Div(1, 2))), ForElement(n, ZZ)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC